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ABSTRACT

Dynamic Analysis of Arbitrary Profile Liquid Annular Seals

and Transient Analysis with Large Eccentric Motion.

One of the main objectives of this work is to develop a new dynamic anal-

ysis for liquid annular seals with arbitrary profile and analyze a general distorted

interstage seal of the Space Shuttle Main Engine High Pressure Oxygen Turbopump

(SSMF.-ATD-HPOTP). The dynamic analysis developed is based on a method orig-

inally proposed by Nelson and Nguyen (1988a, 1988b). The original method used

an approximation scheme based on Fast Fourier _a_forrr_ (FFT) to compute the

circumferential gradients of the zeroth order variables of the eccentric solution. This

method, in some cases, has problems with convergence at higher eccentricities. A tim-

pler scheme based on cubic splines is found to be computationally more efficient and

has better convergence properties at higher eccentricities than the original method.

The first order solution of the original analysis is modified by including a more exact

solution that takes into account the variation of perturbed variables along the cir-

cumference. A new set of equations for dynamic analysis are derived based on this

more general model. The original method was developed for Moody's friction model.

In the current work, a unified solution procedure that is valid for both Moody's and

Hits' models is presented.

Dynamic analysis based on the above improved method is developed for three



different models; a) constant properties, b) variable properties, c) thermal effects

(energy equation) with variable properties.

ArbitrariJy varying sea] proftles in both axial and circumferential directions are

considered. An example case of an elliptical seal with varying degrees of axial cur-

vature is analyzed in detail. A ease study based on predicted clearances (6 axial

planes with 68 clearances/plane) of an interstage seal of the SSME-ATD-HP()Tp is

presented. Dynamic coefficients based on external speci_ed load are introduced for

seals, for the first time, to analyze seals that support a pre-]oad.

The other objective of this work is to study the effect of large rotor displace-

ments of SSM:E,-ATD-HPOTP on the dynamics of the annular sea] and the resulting

transient motion. Currently, the linear model of the annular seal employed at NASA

Marshall Space Flight Center (MSFC) to estimate the seal forces during a transient

motion of the turbopump uses a set of 6 dynamic coefficients computed at zero (e - 0)

eccentricity. This mode], while valJd for a small motion of the rotor about the cen-

tered position, may not be accurate for large off-center operation of the seal. One

of the objectives of this study is to identify the magnitude of these deviations and

establish limits of effectiveness of using such a mode]. This task is accomplished by

solving the bulk flow model sea] governing equations directly for transient sea] forces

for any given type of motion, including motion with Large eccentricities.

Based on the above study, an equivalence is established between Hnearized co-

efficients based transient motion and the same motion as predicted by the original

governing equations. An innovative method is developed to model non-linear]ties in

an annular sea] based on dynamic coefficients computed at various static eccentric-

ities. This method is thoroughly tested for various types of transient motion using

bulk flow mode] results as a benchmark.
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CHAPTERI

INTRODUCTION

Annular seals are used in turbomachinery to reduce excessive leakage of the working

fluid from high pressure side to the low pressure side. The schematic in Figure 1.1

shows a typical seal application. The working fluid is forced to leak from a high

pressure region to the low pressure region through the stator-rotor interface and the

function of a seal is to reduce this leakage. Even though, their main purpose is to

inhibit leakage, the main interest in seals from a rotordynamic point of view arise from

the fact that the fluid forces in a seal can have a strong influence on the dynamic

characteristics of the turbomachine, directly affecting the performance of the machine.

Depending on a number of parameters that go into the design of a seal, these fluid

forces may act to stabilize the rotor system, or worse, work to destabili_.e the system.

Typical annular seal profiles are shown in Figure 1.2. Seals are classified based

on the shape of the clearance profile. A seal with a constant clearance is a straight

seal and that with a linearly varying profile is a tapered seal. A tapered seal may

be either a convergent seal or a divergent seal depending on its slope relative to the

direction of flow as shown in Figure 1.2.

1.1 Literature Survey

Extensive work has been done in the past two decades to understand the dynamic

behavior of seals. Nguyen (1988), provides a complete overview of the work done by

various researchers in this area in the past twenty years. Starting with Black's (1969)

analysis of high-pressure seals, followed by Allaire's (1976) eccentric seal analysis and

Journal model is Teansac_ions of ASME Journal of Tn'bology.
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Figure 1.1 A Pump Annular Seal (Vance, 1991)
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Childs' (1985) Hirs' bulk flow analysis for tapered seals, there has been a steady

improvement in the modeling of annular seals and the agreement of their predicted

behavior with experimental results.

Of the recent work, Simon and Frene (1989) and later San Andres (1991) ex-

tended seal analysis to include variable fluid properties for cryogenic applications.

Nelson and Nguyen (1988a,1988b) are generally credited with developing the first

finite length eccentric solution for annular seals. A numerical solution is developed

in terms of functions of Fast Fourier Trans.forr_ (FFT) which are used to compute

the circumferential gradients of primary variables. The analysis agreed well with

the experimental data. A improved formulation of this metb,_d is the basis for the

current work. Yang eta/. (1992) developed an ap_!_fnate thermohydrodynamic

(THD) analysis for cryogenic seals. This analysis includes an approximate steady

state solution for a centered seal. San Andres et a/(1992) provided a full set of gov-

erning equations for THI) analysis based on a turbulent bulk flow model along with

a numerical solution based on a finite difference (FDM) formulation.

Typically, an interstage seal of the Space Shuttle Main Engine High Pressure

Oxygen Turbopump (SSMF_,-ATD-HPOTP) is designed either as a straight or a ta-

pered (convergent) seal over its entire length as shown in Figure 1.2. Tests of these

seals after a period of operation have revealed a considerable change in their clearance

profile from their original design clearance profile. Some of these distortions are due

to assembly and operating interferences (Scharrer and Nunez, 1989) and others are

due to mechanical and thermal stresses acting on the housing (Scharrer and Nelson,

1990) as the machine reaches and operates about its full power level (FPL).

The effect of seal distortions on rotordynamic coe_cients was first considered by

Sharrer and Nunez (1989). They reported that a 2-D, axisymmetric, finite element

ORIGINAL PAOAE m



analysis which considered the internal pressure distribution, and the boundary condi-

tions due to assembly and operating interferences produced a clearance profile which

was wavy and different from the nominal design tapered profile.

This distorted seal profile in the axial direction was fitted with a clearance func-

tion in the form of a polynomial as,

h(z) = al + a2z + a3z" + a4z s + asz 4 (1.1)

where the coefficients al, a2, ... etc., are coefficients chosen to fit the distorted axial

profile.

They adapted the analysis of a plain seal to the case of a wavy profile seal. They

reported a marked change in the computed rotordynamic coefficients due to a change

in the seal profile. San Andres (1991) repeated the above study using a variable fiuid

properties model and reported similar results.

Scharrer and Nelson (1990) treated this distortion problem using a partially

tapered seal model. Instead of treating the distortions as a polynomial function, they

tried to correct the predicted distortions by machining out the undesirable distortions

at the design stage itself. The model they used to accomplish this is a seal with a

taper on part of length of the seal. Using this model, they conducted a parametric

study of various performance characteristics as a function of taper length to total

length ratio (T/L). Based on this study they recommended optimum ratio of T/L for

best performance of these distorted seals from a rotordynamic point of view.

Iwatsubo and Yang (1987) considered the effects of elastic deformation of the

shaft and the seal housing due to high pressure difference, typical of a high pressure

annular seal, and obtained dynamic coefficients based on this model. They reported

that the direct stiffness is significantly changed when the elastic deformation is in-

eluded. Childs (1987) studied the effects of variable radii and arbitrary clearance



function on fluid forces developed in pump impeller shrouds.

All the work reported in the literature on distortions in seals is limited to dis-

tortion along the length of the seal. Detaihd thermo-elastic studies based on a finite

element model of the entire turbopump have revealed that seal distortion is not lim-

ited to axial direction and a considerable distortion occurs along the circumference

also.

An example predicted seal profie of an interstage seal of SSMF_ATD-I-IPOTP

from a thermo-elastic finite element study of the entire pump is shown in Figure 1.3.

In this figure, the seal is stretched out 360 °, and Z is the longitudinal axis of the seal.

The seal, initial]y designed as a convergent seal, is severely distorted both in the axial

direction as well as in the circumferential direction.

1.2 Dynamic Analysis of an Annular Seal

The main objective of this work is to develop a dynamic analysis for liquid annu-

lar seals with arbitrary profile and analyze a general distorted interstage seal of the

SSME-ATD-HPOTP. The essentials of dynamic analysis of an annular seal are ex-

plained below.

The main objective of dynamic analysis of an annttlar seal is to estimate the

coefficients of the linearized .force-motion model of a seal shown in Eq 1.2, for a small

motion of the rotor. The model shown in Eq. 1.2 is for a two degree of freedom

(2-DOF) vibration model. There are more complex models available that include

additional degrees of freedom, but the 2-DOF model in Eq. 1.2 is the most widely

used one in seal literature to correlate theoretical and experimental data.

/ /= ÷

AF_ -k_ K_ t/!/ -c._ C_ //y



Figure 1.3 Predicted Clearance Profile for Seal, Unit 3-01
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1+ (1.2)

In this equation, (6z,6y) are the displacements, (6_,6!))are the velocitiesand

(8_,6tj)are the accelerationsin the X and Y directionsrespectivelyof the centerof

the rotor,relativeto a staticoperating point (z,y). The fluidforce terms AF, and

AF_ are the incremental or perturbed fluidforces for a small motion of the rotor

shaft about (z,y). These force components, in general, vary as a function of rotor

displacement, translationalvelocityand acceleration and are linearonly for small

orbitalmotion of the rotor.

In this model, K.., k-v, /_, K_ are the linearized stiffness coefficients, C..,

c_, ca=, C_ are the linearizeddamping coefficientsand M==, re,v, rnc_ and M_

are the linearizedadded mass or inertiacoefficientsat the staticoperating point or

eccentricity(z,y).

In the linearizedmodel, the terms [K,=Sz] and [Km_6y ]account for the incremen-

talfluidreaction forcesof the sealdue to a small displacement of the rotor (6z,6y).

The term [k-v6y]isthe cross coupled forcein the X directiondue to a displacement

6y in the Y direction.Similarly,[k_6z] isthe cross coupled force in the Y direction

due to a displacement 6z in the X direction.These cross coupled forces ariseout of

circumferentialvelocity and are a source of instabilityin rotor systems. The terms

[C,=6_] and [C_6y] represent the incremental damping forcesdue to a small velocity

change (6_,6!)). Damping forcestend to have the opposite effectto that of cross

coupled forcesand theirnet effectisto add to the stabilityof the system. The terms

[Mf=d_] and [M_u6_/] are the incremental fluid inertia forces due to a small change

in acceleration (65, S!)). For a concentric seal, K,., = K_, k_ = k_ etc., reducing

the number of coefficients from twelve to six. Typically, for an annular seal, the
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important coefficients are direct stiffness, cross coupled stiffness, direct damping and

direct mass. The contributions of other terms are negligible in most cases compared

to these terms.

These coefficients are estimated by fitting the perturbed fluid forces AFffi and

AF, due to a small perturbed motion about a steady state position (z,!/) to the

llnearized model in Eq. 1.2. These twelve coefficients together provide a dynamic

model of the seal for a small motion of the rotor and this model may be used to

predict the fluid forces acting on the rotor in vibration-response models and rotor

stability analysis.

1.3 Current Work

The dynamic analysis developed in this work is based on a method originally proposed

by Nelson and Nguyen (1988a, 1988b). They are credited (Childs, 1993) with devel-

oping the first finite length eccentric sohtion for annular seals.The original analysis

showed good agreement with experimental results.

The original method proposed a method in which the governing nonlinear PDEs

modeling the turbulent bulk flow in an annular seal are reduced to a set of ordinary

differential equations by using an approximation scheme for computing the circum-

ferential gradients of the primary variables. With this assumption, the order of the

problem is reduced by one, i.e., from a 2-D to a 1-D problem and essentially the

problem is reduced to solving a set of ordinary differential equations for which the-

ory is wall developed. This reduction in computational complexity

-magaitm_ is the main advantage of this method compared to a 2-D finite difference

method (FDM) or fmite element method (FEM) formulation of the same problem.

In the current work, the zeroth order and first order solutions of this original



analysis are improved to make the overall solution more accurate and computationally

more efficient and eliminate some of the reported problems with the original method.

The original method used an innovative approximation scheme based on Fast

Fourier _'ansforma (FFT) to compute the circumferential gradients of the zeroth

order variables of the eccentric solution. The number of trigonometric functions

included in the approximation is equal to the number of circumferential grid points.

It has been reported (San Andres, 1991) that this method requires a considerable

number of trigonometric functions for accurate solution at high eccentricities. Nguyen

(1988) also reported problems with convergence at higher eccentricities in some cases,

possibly due to the truncation error introduced by including only a finite number of

functions. In addition, another disadvantage with trigonometric functions used in the

original method is the very CPU intensive nature of their computation.

A simpler scheme based on cubic splines is found to be computationally more

efficient since it does away with trigonometric functions and it also does not require as

many circumferential grid points as the original method for a given accuracy tolerance.

The increase in accuracy with cubic spline based approximation scheme also reflects

in better convergence properties at higher eccentricities compared to the original

method. This fact is verified by the successful analysis of cases with the new approach

where the original method had falied.

This first order solution of the original analysis is modified by including a more

exact solution that takes into account the variation of perturbed variables along the

circumference. This improved analysis show better agreement with experimental

results than earlier analysis, particularly at higher eccentricities. The new analysis

developed treats these variables as general continuous functions and a completely

new set of equations for dynamic analysis are derived based on this more general

model. The original method was developed for Moody's friction model In the current
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work, a unified solution procedure that is valid for both Moody's and Hits' models is

developed.

Nguyen (1988) developed the original method for liquid seals with constant prop-

erties and gas seals. Since the main interest of the current work is analysis of liquid

seals for cryogenic turbopumps, the improved method will be extended to include

variable/]aid properties and thermal effects.

Dynamic analysis based on the above improved method is developed for three

different models.

1. Constant t]nid properties.

2. Variable fluid properties

3. Thermal effects (energy equation) with variable fluid properties.

Arbitrarily vaa-ying seal profies in both axial and circumferential directions are

considered. The arbitrary seal profie may be either due to distortion as discussed

earlier, or by design itself to enhance some optimum performance characteristics of

the seal. An example case of an arbitrary profie, an elliptical seal with varying

degrees of axial curvature, is analyzed in detail. An example f_n thickness analysis

for this elliptical seal is presented.

A case study based on predicted clearances (6 axial planes, 68 clearances/plane)

of an interstage seal of the SSME-ATD-HPOTP is presented. This predicted profile

is obtained from a thermo-elastic finite element model of the entire turbopump. The

results of distorted seal analysis are compared with those of a similar seal with average

inht and exit clearances.

Typically, seal coefficients "are computed in a minimum film thickness coordi-

nate system as a function of eccentricity ratio and then transformed into the user
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defined coordinate system for actual application. Such a procedure is not valid for

an arbitrary profile seal with a non-uniform cross section. This important feature of

directional dependence of dynamic coefficients for arbitrary profile seals is illustrated

with reference to an diiptical seaJ. A method for computing these coefficients directly

in the rotor coordinate system is presented. Dynamic coefficients based on external

specified load are introduced for seals for the first time to analyze seals that support

a pre-load.

A number of cases from literature, both experimental and theoretical, are studied

with reference to the analysis developed. In particular, results of current work are

compared with the theoretical work of the following: Nelson and Nguyen (1988a,1988b),

Childs and Kim (1985), Childs and Lindsey (1993), Shatter and Nelson (1990), Schar-

rer and Nunez (1989), and San Andres (1991,1992). In addition, theoretical predic-

tions from current work are compared with a number of experimental results.

The other objective of this work is to study the effect of large rotor displacements

of SSMF--ATD-HPOTP on the dynamics of an annular seal and the resulting transient

motion. Currently, the linear model of the annular seal employed at NASA Marshall

Space Flight Center (MSFC) to estimate the seal forces during a transient motion of

the turbopump rotor uses a set of 6 dynamic coefficients computed at zero (e = 0)

eccentricity. This model, while valid for a small motion of the rotor about the centered

position, may not be accurate for large off-center operation of the seal. One of the

objectives of this study is to identify the magnitude of these deviations and establish

limits of effectiveness of using such a model This task is accomplished by solving

the bulk flow model seal governing equations directly for transient seal forces for any

given type of motion, including motion with large eccentricities.

This approach of solving governing equations directly for transient seal forces

while being the most accurate, may not be practical for routine rotordynamic sire-
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ulations. In fact, this is the primary reason for developing and studying approxi-

mate linear models and their widespread use in vibration-response and rotordynam;c

simulation studies. As an alternative, an innovative method is developed to model

non-linearities in an annular seal based on dynamic coefficients computed at various

static eccentricities in the seal clearance. This method, thoroughly tested for various

types of transient motion, provides an accurate and computationally efficient means

to modal the effects of eccentric seal operation on the dynamics of the rotor system.

The results from this new method compare well with bulk flow model results.

Typically, the dynamic coefficients are computed from the first order solution

which is directly dependent on the zeroth order solution. Even though the zeroth or-

der equations and associated boundary conditions are essentially the same for different

analyses based on bulk flow model, for example Childs (1985), Ndson and Nguyen

(1988a,b), San Andres (1991), and current analysis, there appears to be variations in

how zeroth order and first order equations are formulated and solved. In the pub-

lished literature on seals, it is assumed that the dynamic coefficients extracted from

the first order solution automatically approximates accurately the dynamic behavior

of the original governing equations for a small motion of the rotor. Two possible

sources that may be cited for a discrepancy between these two approaches are, a)

inaccurate formulation of the problem, b) error in implementation. In the present

work, based on the transient analysis developed with original governing equations

(no first order solution involved), an equivalence will be established, for the first time

for seals, between the linearized coefficients based seal forces i.e., computing seal

forces using coefficients in the linearized force-motion model of Eq. 1.2 versus the

same forces as predicted by the original governing equations. If such an equivalence

can be established, it proves that the dynamic coefficients being extracted from the

dynamic analysis are indeed the correct coefficients which in turn validate the zeroth
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and first order solutions. In other words, it is a check case for the entire analysis.

1.4 Original Contributions

The original contributions of the current research are summarized below.

1. Develop a dynamic analysis for arbitrary profile liquid annular seals based on an

approach first proposed by Nelson and Nguyen (1988a, 1988b). The following

modifications are incorporated into this analysis.

(a) Improved zeroth order solution.

(b) Improved first order solution.

2. Dynamic analysis for eccentric seals is developed for three different models based

on the above method.

(a) Constant fluid properties.

(b) Variable fluid properties.

(c) Thermal effects (energy equation) with variable fluid properties (concentric

CaSe).

3. A unified solution procedure is presented for the following two friction models.

(a) Moody's Model

(b) H.irs' Model

4. Dynamic coefficients for seals based on external load specification.

5. Application of the new method to study the static and dynamic characteristics

of an arbitrary profile seal, e.g., an elliptical seal with a varying axial curvature.
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6. Study of directional dependence of dynamic coeffcients for arbitrary profLle

seals.

7. Dynamic analysis of a general distorted interstage seal of SSME-ATD-HPOTP

turbopump.

8. Transient analysis with an annular seal for large eccentric motion of the rotor.

(a) Transient analysis with bulk flow governing equations.

(b) Comparison of bulk flow model simulations with linear model (dynamic

coefficients computed at concentric position) results.

(c) Study of equivalence between rotordynamic coefficients based transient

motion and the same motion as predicted by the original governing equa-

tions.

(d) A new method to model non-linearities in an annular seal for transient

analysis.

(e) Thorough testing of the new method for various types of transient motion

and comparison with bulk flow model.
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CHAPTER II

CONSTANT PROPERTIES MODEL

2.1 Bulk Flow Governing Equations

The bulk flow governing equations of turbulent fluid flow in an annular seal have

been derived using several approaches. The following analysis is based on the work

of Nelson (1984).

The primary variables of the bulk flow are the axial velocity u(z, q), circumfer-

ential velocity v(z, q) and pressure p(z, q). The variation of these primary variables

across the thin film is neglected. The axial and circumferential coordinates are z and

q respectively. The radius of the rotor is R and the rotor angular velocity is w rad/s.

The differential fluid volumes used to derive the bulk flow governing equations

are shown in Figures 2.1-2.2. Mass conservation of fluid in the differential volume of

Figure 2.1 yields,

Ov Oh

p( v +'_qdq )( h + -_q dq)dz -

or,

_z Oh Ohphvdz + p(u+ dz)(h+_zdz)dq- puhdq+p._dzdq = 0

(2.1)

oh oh oh
u_z + Oz + v-_q + Oq + Ot - 0 (2.2)

Conservation of momentum in the axial direction for the fluid in the differential

volume of Figure 2.2 may be expressed as,

Op Oh Oh
(phdzdq) DU _ (-ro,-r,,)azdq + phdq (P+_-zdZ)(h+_-zdz)dq + p_zdzdq (2.3)Dt

where The terms r,_, r°_ are rotor and stator surface shear stresses in the axial di-

rection. _ is the total or material derivative of the axial velocity u and is defined
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as,

Du Ou Ou Ou

Dt - (-_ + _,_ ÷ v_) (2.4)

Simplifying the above expression yields,

Op Ou Ou Ou 1

0_ - P(_ + _ + v_) + _(,., + ,,,) (2.5)

Similarly, conservation of momentum in the circumferential direction is expressed as,

(pha_aq)_ = (_%,_ _,,)a_aq + (p+ aq)(h+ Naq)az - pha_ (2.6)

where r,_, roe are the rotor mad stator surface shear stresses and Dr
_-/is the total deriva-

tive of circumferential velocity v defined as,

Dv Ov Ov Ov

57 = (g/+ _ + vN) (2.7)

or,

Op Ov Ov Ov 1oq - P(g/+_÷v N) + (,.,+-,,)

The shear stresses at the wall based on Moody friction factor are given by,

(2.8)

,_ , (v-,o)
= pf, gv_ + v= + el, 2 v/_' + (_- w)=

T_ "'2

= pf._v_' + _= ÷ p.f,_v/,, ÷ (v- w),

where,

P density of fluid

1/J

Y,

rotor rpm in rad/s

_R, rotor surface velocity

stator friction factor

f, rotor friction factor
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ah

dq

dz

Oh

Oh
(_ + _d_)(h + _d_) dq

q = t_

hv dz

Figure 2.1 Differential Volume for Deriving the Continuity Equation

• _ Oh ph do

%oz.

ah

ph dz

ap ah

(p+ _q dq)(h+ _q dq)d,_---_

opd_)(h+ ah(p+ _ _ d_)dq

Figure 2.2 Differential Volume for Deriving the Momentum Equations
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Using the transformation for the circumferential coordinate q -- RE, in the

Eqs. (2.2,2.5,2.8)yieldthe followingbulk flow continuity,axial momentum and cir-

cumferential momentum equations for an incompressible fluid.

Continuity:.

O(hu) 10(hv) Oh

0--;- + R o_ + 0-7 = 0 (2.11)
Azial Momentum:

Ou v Ou Ou

= h{Tf+ -_o_ + _'_)
U _ 2

+ f.5_+v, + f,5(u +(v- w) 2 (2.12)

Circumferential Momentum:

h Op Ov v Ov Ov
-p_o_ = h{_ + ROE + '_}

7)

+ L_v_ +v, + f (v- (2.1z)

2.2 b'¥ictionFactors

Two friction models extensively used in seal analysis are the Moody's model and

the Hits' model. These two models differ in the way the roughness of the surface,

both stator and rotor, are modeled. Of these two models, use of Moody's model

is more prevalent because of a more realistic friction factor which is dependent on

local Reynolds number, film thickness and surface roughness compared to the Hirs'

model where the coefficients are for a fixed clearance and an average Reynolds num-

ber. However, considerable experimental and theoretical data exists for Hirs' model

based analysis, for example Childs (1985), Shatter end Nelson (1990) etc., making it

attractive for comparative studies for any new analysis such as the current work.
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Moody's Model:

where

es

e_

h

C.

Ro

R,

2c.

2c.

0.0055.o (_o'_ _o'_)':,}•f. = _t1. + +

°'°°55_o (_o'-_ _o'¼)_:,}f,= 4 t. + +

p

R. = 2:h/,:+ (_- w),
p --

stator pocket

rotor pocket

ftlm thickness

nominal radial clearance

statorReynold's number

rotor Reynold's number

statorrelativeroughness

rotor relativeroughness

(2.14)

(2.1S)

(2.16)

(2.1?)

Hits ' Modeh

]. = n.R7." (2.1s)

fi -- r_.R_, (2.19)

where no, m,, r_, and m, are Hits' constants for stator and rotor respectively.
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2.3 Film Thickness

The expression for film thickness h(z,/3) as a function of eccentricity is derived in

the rotor (fixed) coordinate system, instead of a minimum film thicim_ss coordinate

system normally used in straight or tapered sea] analysis. In a typical analysis with

these seals, the minimum film thickness coordinate system is usually aligned with

the X-axis of the rotor coordinate system and for eccentric operation, the dynamic

coeffcients are computed as a function of eccentricity along this axis. Although the

dynamic coefficients can be rotationally transformed once they are evaluated at a

given equilibrium position, the minimum film thickness system cannot be used with

a seal that has a circumferentially varying clearance (which destroys axisymmetry).

This same restriction applies to, for instance, modeling pressure dam bearings versus

plain journal bearings. As a result of this asymmetry, the dynamic coeffcients have

to be computed directly in the rotor coordinate system for non-un_orm profiles or if

a minimum film thickness system is used, the orientation needs to be specified. This

important feature of the directional dependence of dynamic coeffcients for arbitrary

profile seals will be further discussed with reference to an elliptical seal in Chapter V.

The seal geometry is, in general, defined by its clearance function c(z,_). The

clearance function of a sea] defines the fluid film thickness when the rotor is at the

centered or concentric position with respect to the seal. A constant c specifies a

straight seal, a linear function in z defines a tapered seal and so on. For the purpose

of this study, any profile other than a straight or a tapered profile is considered as

an arbitrary profile. The _m thickness, which varies with eccentricity, is derived as

a function of c(z,/3) and the eccentricity vector (e, _). The angle ¢_, defined as the

eccentricity angle, is the angle made by the eccentricity vector with respect to the

fixed X-axis. The magnitude of the eccentricity vector is given by the eccentricity,
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Y

R÷h

film thickness, h

c: clearance function
0-0': eccentricity

e, p

o e x X

Figure 2.3 Diagram for Deriving General Sea] Clearance Expression

e. The expression for the Klm thickness is given below with reference to Figure 2.3.

In this figure, eft, e_ are the offsets of the center of the rotor O' with respect to the

center of the seal denoted by O. In this figure, ¢ is the eccentricity angle and/3 is

the angular coordinate.

By the law of cosines,

(R+ h)' = _ + (R+ c)' - 2_(R+ c)co,(_- _)

or_

h(=,_) = (_, + (R+c):

substituting,

(2.20)

- 2e(R+ c)cos(_ --¢) - R (2.21)

ecos(_-¢) = e.cos_ + eusin _ (2.22)

e, = ecos¢ (2.23)
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% = esin¢_ (2.24)

Eq. (2.21) may be rewritten as,

h(z,13) = ¢(R + e) 2 - (e, sin_ - eucosl3)2 - (e,,cosB + %sinB) - R (2.25)

and its gradients in/3 and z directions are,

Oh

o8
(R + c)_ - (e.si,-,B- e,,co.,B)(e.cos_+ e,,_i,_B)

_R + c)2-- (e.,,i,-,Z- e,,,_.o.,Z)'

+ (e._i,_- ,.,,co_) (2.26)
Oh (R + c)ao

0, V/(R+ c)=- (e.,in_ - e,,co,_)' (2.27)

Besides specifying the film thickness in a fixed coordinate system, the above

expression for film thickness has the foUowing advantages over the more commonly

used approximate form,

h(z,/3) = c(z) - effico$13 - %8in/3 (2.28)

1. It models the curvature of the film thickness accurately. This is important,

particularly, when analyzing a severely distorted seal or an arbitrary profile seal

with a clearance function varying in the circumferential direction, such as an

elliptical seal.

2. It specifies the ftlm thickness in a fixed coordinate system which is essential

for analyzing non-uniform profile seals as explained earlier. (examples to be

discussed later).

3. The general expression in Eq. (2.25) is more accurate, mathematically, partic-

ularly at higher eccentricities than the approximate form in Eq. (2.28).
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2.4 Solution Procedure

The general steps involved in the solution procedure are outlined in the flow chart

(Nguyen, 1988) shown in Figure 2.4. These various steps are summarized below.

1. Derive the bulk flow governing equations.

2. Perform perturbations on the original governing equations to yield zeroth order

and first order governing equations.

3. Form the appropriate boundary conditions at the inlet and the exit.

4. Solve the set of zeroth order equations subject to the boundary conditions at

inlet and exit to obtain the zeroth order (steady state) solution of the primary

variables, Uo, v0, P0.

(a) Compute leakage.

(b) Compute steady state reactive seal forces.

(c) Compute frictional torque.

5. Perturb the zeroth order boundary conditions to obtain the first order boundary

conditions.

6. Assume a harmonic solution form and use a separation of variables procedure

to reduce the first order equations to a set of ordinary differential equations.

7. Solve for the first order variables, ul, el, Pl, subject to the first order boundary

conditions.

8. Extract dynamic coefficients from the first order pressure field.



24

I o

I L. F ]

• _o J

o

o01
_I

_._J



25

2.5 Perturbation Analysis

In this section, the zeroth order and first order equations are derived using a per-

turbation analysis. The original bulk flow governing equations are perturbed about

their steady state values to yield the zeroth order and first order governing equations.

The zeroth order equations are also known as the steady state equations and they

may also be obtained from the original governing equations by dropping the time

dependent terms. The perturbed or first order equations of the governing equations

Eqs. (2.11-2.13) are derived for a small motion of the rotor about a steady state

eccentric position.

The assumed form for the dependent variables and film thickness for perturbation

analysis are given as,

u(z,fl, t) = uo(z,fl) + eux(z,/3,t) (2.29)

v(z,fl, t) = Vo(Z,fl) + evl(z,fl, t) (2.30)

p(z,_,t) = P0(z,Z) + _Pl(z,Z,t) (2.31)

h(z,fl, t) = ho(z,fl) + eh_(z,13,t) (2.32)

where e is a small perturbation and Uo, v0, P0, h0 are the zeroth order variables and

ul, vl, pl, hi are the corresponding first order variables. Substitution of these expres-

sions into Eqs.(2.11-2.13) and neglecting second and higher order terms yields sets

of zeroth order and first order equations of the form,

(zeroth order equations) + e(first order equations) = 0
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2.5.1 Zeroth Order Equations

The zeroth order equations are essentiallysteady stateequations and they may also

be obtained by canceling out the time dependent terms in the original governing

equations. The subscript 0 in the following zeroth order equations refer to zeroth

order variables.

O(houo) 10(hovo)

Oz + R 08 - 0 (2.33)

ho Opo

po az = hO{R Ouo + _o_-_°)
UO 'I/,0 •

+ s.0T_0_+vo_ + f,0TvQ+ (_0-w) _ (2.34)

ho Opo = ho{ V°Ov°poR 08 R 08 + uo )

vo (Vo- ,_)v%'+ (vo- _), (2.35)+ S.o_V_o_+vo_ + S,o 2

where the friction factors f,o and fo0 are the friction factors.

The set of equations in Eqs. (2.33-2.35) are the zeroth order equations for a

constant fluid properties model or an incompressible fluid.

2.5.2 First Order Equations

The firstorder equations are given by,

Continuity:.

h Ouo ho OVo Oho 10ho

o-_-;+ _-_ + T;,, _ + -_-_-v, =
Oho Oho voOho

at ___ R 08

_(_ 1o,_
o_ + -g_)h_ (2.as)
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Azial Momentum:

ho OUo ho _ hovo Ouo _ Ouo

,,o-_-- + + + ,,o-_-- + _u_ + A,,_,_= Ahhl (2.3_')po Oz R O_

Circumferential Momentum:

_z hovoOvo ho Opo Ovohouo + R 0_" + + + B,,ux + B,,vl = Bhhl (2.38)t,oR O_ ho-_

where the coefllcients A_, A_, Ah, B_, B, and B_ are functions of steady state vm-i-

ab]es Uo, v0, P0 and their axial and circtmaferential gradients and friction factors and

their derivative terms. These coe_icients for constant properties model are given in

Appendix A.

It can be seen that the first order continuity and momentum equations do not

change between the Moody's and Hits' friction models and the friction factor model

only affects the definition of the coefficients A_, A_ ... etc.. These coefficients are

derived in such a form such that the solution procedure is valid for any general friction

model. Specific analyses for two particular models, a) Moody's model b) Hits' model

are developed based on tiffs general format.

2.5.3 Linearization of Friction Factors

The friction factors fo and fi, for constant fluid properties, are implicit functions of u,

v and h. The perturbation in the friction factor is obtained by a linearization process

using Taylor's series expansion about the operating point. The following example

analysis Klustrates the steps involved in the linearization of friction factor f°. Using

Taylor's series expansion of f° about the steady state variables, Uo, v0 and P0,

L(,_,v,h) OL I(.,_,)(uLol(,,.,,_.) ÷ _ -,,o)

of, (h ho)+ I(.0_)(_-_o) + _ (.o,.,) - (2.39)
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Or_

of. of. af.,
fo = foO ÷ _-ueUl ÷ _-veva ÷ _-enx (2.40)

The expressions, -_,-_, _ are derived for both Moody and Hits friction factor

models and are given in the Appendix D.

Of.
oq"'_ = -9"°u_ o + v_ (2.41)

Of. v0
0"_- = -g.o : (2.42)Uo+ vo_.

8f, ha)

_--Z - - ho (2.4s)

where_

0.0055 x 10s(104 e,g,o = 12R,o _ + 106 )-2/s

_ 0.0055. 4 e, 106_.._)1/sh.o - -iT -0° _o+

R.o = 2--__o,+,, _

(2.44)

(2.45)

(2.46)

For the case of a fluid with variable properties, there will be two additional terms,
8_Ash
8p _ 8_s "

2.6 Zeroth Order Boundary Conditions

The boundary conditions for the zeroth order or steady state equations are illustrated

in Figure 2.5-2.6.

The fluid flow in an annular seal occurs from the high pressure side (inlet) to the

low pressure side (exit) as shown in Figure 2.5. Just prior to the inlet (z = 0), the

fluid has zero axial velocity and the fluid pressure is given by the supply pressure or

reservoir pressure pl. At the entrance of the seal a swirl is induced in the fluid by the

eye of the impeller creating the tangential velocity of the fluid as shown in Figure 2.4.
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Figure 2.5 Boundary Conditions
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Figure 2.6 Zeroth Order Boundary Conditions
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Generally, the magnitude of this tangential velocity is estimated as a percentage of

the rotor surface speed and is specified by the pre-swirl ratio as, vo = psr(u_R), where

R is the radius of the rotor, w is the angular velocity in rad/s and psr is the pre-swirl

ratio.

At the inlet, as the fluid enters the seal there is a loss in pressure with a corre-

sponding increase in the acceleration of axial velocity, u. The relationship between

these two variables is given by the Bernoulli's equation as,

1 2

p, - = ypo ol(O, )(1 ÷ (2.4?)

where, _ is the inlet loss coet_icient and P0x, uol refer to the pressure and axial velocity

right after inlet as shown in Figure 2.6.

The inlet or entrance loss factor, in general, is a function of geometry at the

entrance as well as local Reynold's number (Nguyen, 1988). In the present work,

as is the norm in seal literature, a constant value is assumed for this coeiticient.

In practice, one of the methods used to estimate the pre_swirl ratio and the inlet

loss coeiticient is by matching the theoretical flow rate with experimentally measured

data. At present, there is no reliable way of predicting these two parameters and

the empirical procedure used above typically gives rise to different sets of input data

depending upon the seal analyst's objectives.

Right after the exit (z = L), the pressure is given by the low pressure, pc. At

the exit, a similar relation as given in Eq. (2.47) is used to relate the variables.

1 2

- pe = - (2.48)

where, _, is the exit pressure recovery coei_cient. Typical values for a worn and new

seal are 0.7 and 0.85. In this analysis, the value of _e = 1.0 is used, i.e, there is

complete recovery of pressure.
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The following is a summary of the boundary conditions for the zeroth order

equations.

At the/n/et:

azial velocity, uo:

prior to inlet:

right after inlet:

circumferential velocity, Vo:

=o(O,#)= o (2.49)

,_o(o,_)= ,,o1(O,_) (2.50)

prior to inlet:

vo(0,3) = ;st x _oR (2.51)

po(o,_) = p, (2.52)

(2.56)

or,

Po_(O,3)= v.

right after inlet:

po(O,,8) = Poz(0,3) (2.53)

The pre.ures v_, pox(O,B) and axialvelocityuo,(0,3) at theinletarerelatedby,

1
P, - pol(0,/_)= _po_o_(0,/_)(z+ _,) (2.54)

At the exit,the exit pressure recovery codBdent isassumed to be 1,i.e.,

Po 2,'^
vo,(o,_)- v, = T-,,o,_U,_)(1-z) (2.55)
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Let Ap be the total pressure drop across the seal.

Eq. (2.54) may be rewritten as,

Ap - Pl -p_ (2.57)

1 2

pol(O,_) = Ap + p. _ _po-o1(0,,) (1+ (,) (2.58)

For the case of an incompressible fluid, the absolute pressure is not important

and therefore the exit pressure may be set to zero, i.e.,

Eq. (2.58) may Be rewritten as,

or

pol(0,_) = Ap_

Pe --" 0

1 2

_po,.,ol(O,_)(1+ _)

(2.59)

(2.60)

2Uol(O,,B) = po(1 + _,) (Ap - po,(O,_)) (2.61)

At the outset, P01(0,D) is unknown and must be solved iteratively by requiring

that the pressure distribution at the seal exit satisfies the following condition.

Po:_ = 0

subject to the constraints of Eqs. (2.51) and (2.54).

(2.62)

2.7 Solution Procedure for Zeroth Order Equations

The solution for zeroth order equations involves the direct integration of three coupled

nonlinear partial differential equations subject to the boundary conditions given in the

previous section. The current analysis uses a zeroth order solution procedure different



33

from the original method. The following is a brief comparison between Nelson and

Nguyen's original approach and the one used in current work.

2.7.1 Comparison with Nelson and Nguyen Approach

The three steady state equations are arranged in the following fashion and integrated

from inlet to the exit.

A.

o_st
Oz

F,_(Uo, vo,Po, o_ ' o_,

F,,(Uo, vo,po, o_, o_, o_

' 8_'

(2.63)

The functions F,_, F,,, Fp, for a constant properties model, are given in Appendix

The original analysis of Nguyen (1988) proposed a method by which the coupled

partial differential equations are reduced to coupled ordinary differential equations by

approximating the circumferential gradients of the variables u0, v0 and po as shown in

Eq. (2.63). At each axial step in the iterative procedure, the gradients with respect

to _ are computed based on the values of the variables at the previous step. An

approximation scheme based on Fast Fourier _ransforms (FFT) was used for this

purpose. Assuming that velocity and pressure distributions are known at an axial

step, the gradients of these variables, _, _, _, may be computed by specifying

each of the known values as a finite-length complex Fourier series as given below.

Uo(Z,/_) = Real{rio + 2 u.(z)e _} (2.64)
1

= Real(vo+ 2 (2.65)
1

po(z,//) = Real.[po + 2 p,,(z)e'_} (2.66)
i

where N is equal to one half the number of circumferential divisions. The above
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expressionsmay then be used to compute the gradients as,

= Reat(2fL "-1

--1

inp,.,(z)e i'a)

This methods suffers from the following drawbacks.

(2.67)

(2.68)

(2.69)

i. It requires too many functions for accurate solution at high eccentricites (San

Andres, 1991).

2. Computation of trigonometric functions is a very CPU intensive procedure.

3. Convergence probems (Nguyen, 1988), possibly due to truncation error intro-

duced by not including enough functions in the approximation scheme.

4. No reliable way to decide on the number of functions to be used.

In the present analysis, a simpler method based on cubic spines is implemented.

This method is more accurate as no truncation error is involved as in the FFT method.

Also, convergence at higher eccentricities is achieved with relatively fewer iterations

than the FFT method. It is also computationally more efficient as it does not involve

the computation of CPU intensive trigonometric functions. Also, the number of

circumferential grid points may be varied, upto a limit, with out affecting the accuracy

of the solution.

2.7.2 Iterative Solution for Zeroth Order Equations

Typically, an iterative procedure is used to solve for the pressure distribution. Fig-

ures 2.7-2.8 illustrate typical subdivisions in the axial and circumferential directions
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for spline interpolation and numerical integration. The circumference is divided into

segments of equal length both in the axial and the circumferential directions.

Let m be the number of axial grid points, while n is the number of circzunferential

grid points. Let the superscript j indicate a function evaluated at B = Bj. The coupled

partial differential equations are reduced to a set of coupled ODE's, by moving all

B-dependent terms to the right-hand side as shown in Eq. (2.63). At any given axial

plane, cubic splines are used to fit u(0j), v0(j) and p(0j) to compute the gradients _{J)

_---_(_) and _[i)oa where j = 1, 2,..., n the number of circumferential grid points, at

that axial plane.

The set of differential equations in Eq. (2.63) are solved using separation of vari-

ables type assumption that at any timed axial location, the gradients of the dependent

variables uo, Vo, Po are obtained by spline fitting these variables at that axial location

as a function of the circumferential coordinate _.

Let O represent a cubic spline function operator which when applied to a set of

function values yields a continuous piecewise cubic spline approximation in D of that

function. In other words, given a set of grid values for _ = _1,_2,--. ,D,, at any axial

location z = z_,

,,oCz_,_) = ec_,,_c0Jl),j = l, 2, ..., n

_o(_,#) = e(#,,,cJ_),j = 1, 2, ..., ,_

no(zk,#) = ®(#,ncj)),j = 1, 2, ..., n

The circumferential gradients, _ s,o_, a_, _ are evaluated as,

o_0cJ_ _ a®(#,,,c0J))
a--_ - a# I,_=_.,

o_0c_ no(#, ,,ocj))
O---_ : a# I_:_,

(2.70)

(2.71)

(2.72)

(2.73)

(2.74)
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Figure 2.7 Circumferential Grid
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Figure 2.8 Grid for Numerical Integration
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Opo(J) oe(_,p_j))
o-_ = o, J_=_; (2.75)

The set of ODE's are solved subject to the boundary conditions

At the inlet, (z - 0),

circumferential velocity,

p_881gf'_,

_J)(o,_) = ps,. × (_s), J= 1, 2, ..., (2.r_)

,,L_)(o,Bj)=

At the exit, (z = z,.,,),

2

{po(1+ _,)(zxp- p_)(o,zj))_/_,j = i, 2, ... (zrT)

p(J)(O,_j) -- O, j "- 1, 2, ..., n (2.78)

In the parlance of numerical analysis, the above problem is classified as a " two

point boundary value problem", since the known boundary conditions exist at both

ends of the boundary. In this study, this problem is solved using a multi-dimensional

Newton-Raphson method known as "shooting method". Nguyen (1988) reported

using a similar method based on numerically computed gradients.

The problem may be specified in the following terms. It requires to find the n

unknown inlet pressures, p(ol)(zl), p(02)(zl), ..., p(o")(za) subject to the condition that

the n outlet pressures p(01)(z,_), p(02)(z,_), ..., p(0")(z,,,) are forced to be zero.
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This may expressed as,

p(1)r z ..,(1), _ (_), _ ...

(-)_ (i),po

0

0

0

(2.79)

It may be noted that even though both U(oj) and v0{j) are unknown at the inlet,

there are only n unknowns at z, due to the relationship given in Eq. (2.77).

The two point boundary value problem is now reduced to finding the n roots

of the above equation. The numerical integration of the preceding differential equa-

tions may be considered as only a means of evaluating the functions p(oJ)(z.,) for any

given set of guesses for the roots p(oJ)(zl), p{o_)(Zl),..., p(0")(z,). As mentioned earlier,

shooting method is an application of a multidimensional Newton-Raphson method

for iterative search of roots p(1)(zl) , p(o2)(zl),..., p(")(zl) combined with a numerical

integration based on evaluation of the exit pressures p(oJ)(z,_)

Dropping the subscript 0, let p_J)(zl) represent the k-th guess for the set of inlet

pressures p(oJ)(zl) that satisfy the boundary condition ofp(j)(z,_)= 0 at the exit. Let

the next guess be given by

(J) zp +l(1) = + (2.s0)
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where ..(i)
_.k+l)(zl) is the new guess. This may be expressed mathematically

8z

8=

8=

8=

8=

8=

a=

8=

8=

F l/.,(1) . 0) 8,_')

,_.)

' 8BJ

F;=, (_) (2) 8$ _)
tUo ,_o , =gZ-_)

r_;LUo ,v o , a_ ,

t"o ,_'o(_), s_ , :'5-_--_,

F;,,_, (,',) Vo(-), _(")t_o , :_-_)
F._. (-). (-) __J_(")_(-)

_-o ,_o , ae ,:_-_ )
By(")

"p_,_O _ 8_ '

(2.81)

: : ".. :

k k k
(:_r,1 (:_n2 " " " (::_nn

(2.82)

","_- (2.s3)
a

The partial derivatives are computed numerically using a finite difference formula,

ov(o')(_,.) 1
_d_)(_) ._ _p_d)(=,) x

o 't=,,,,pot_),...,p_o_)(z_)+ ..

- p_o'){_,,,p_o_)(_,_),...,p_o_)(._),...,pt)(z,)}l

j=l, 2, ..., n; i=1, 2, ..., rt (2.84)

It requires one complete numerical integrationof the Eq. (2.81) to compute
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p(kJ)(z,_) in Eq. (2.82) and an additional n integrations of Eq. (2.81) to obtain the

derivatives in Eq. (2.83). These integrations may be performed by any standard

integrators. Nguyen (1988) used the simple Euler's method for the above numerical

integration. For this study, the following are used.

1. 4--5th order Runge-Kutta-Fehiberg Method.

2. Predictor-Corrector Method.

3. Adams' Method.

2.7.3 Cubic SplineInterpolation

Cubic splinesare widely used in interpolationand surfacefittingand a briefto intro-

duction to splinesisgiven in this section.

Let the dependent variable pressure p, along the circumference of the sealat a

given axial location z = z,= be specified by p(z,,,j3j) = P(_#), for j = 1, 2, ..., n

corresponding to/3 = 81, /32, ..., 3,, where n is the number of circumferential grid

points.

In a given interval (/3j,3j+l), the dependent variable P(/_) is interpolated using

a cubic polynomial function of the form given below.

P(_)= Pj + bj(Z-Z_)+ c#(_-Zj)"+ dj(Z-B_)",Z#< Z < Z#+I (2.85)

The above equation may be rewritten in a more general form to facilitate the

computation of the linear coefficients bj, cj, dj. These coefficients are determined

such that the above cubic polynomial is reduced to a cubic spline function, i.e., the

function P(_) and its derivative P'(_) are continuous in (_j,_+l). In the following
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equation " refers to the second derivative of the dependent variable.

where,

P(B) = APj + BPj+I + CPf + DPf+ 1 (2.86)

A = BJ+_-_
_+_ __, (2.SZ)

B = _-&
_j+, __j (2.SS)

C = 1(AS- A)(Bj+: -Bj) (2.89)

D = _(B 3- B)(B_+I-_) (2.90)

The above formulation has the following important features.

1. The function P(_) is continuous at _j and _j+l, i.e., at _j in the interval

(Zj-I,Zj) and at Bj+I in the interval (&,_j+l)

2. The function P(_) has a continuous derivative at flj and Bj+_, similar to the

above condition.

3. The above two conditions give rise to four constraints which are used to deter-

mine four adjustable linear coefficients in terms of P_,P_+I,P;',P;+I.

4. Also, four is the number of parameters required to define a cubic polynomial in

general.

The firstand second derivativeof the interpolatingfunction isgiven by,

cgp Pi+I - Pi 3A 2 - 1
##

O'-_ = #j+1 - #_ 6 (#_+i - ##)P}+I

3B 2 - 1
#f

+ s (&+, - &)e_+, (2.91)

O:p AP;' + BP;'+, (2.92)a#:
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By imposing the condition of continuityin firstderivativeat node points,the

followingequation isobtained for j = 2, 3, ..., n - i.

This is a system of n - 2 simultaneous linear equations involving n unknowns,

Pj',j - 1, 2, ..., n. Two additional conditions axe required to uniquely define the

cubic spline. These two conditions may be provided in various ways based on the end

conditions i.e., at 81 and 8,.

Let 81(8) and s,(_) be two cubic polynomials that pass through the first and the

last four data points. The two end conditions that complete the solution are defined

by forcing these two cubics to have the same third derivative at the end points.

a'(/3z)-- e"'(,Sz) (2.94)

s'"(D,)-- P'"(13,) (2.95)

The Eq0 may be rewritten in a more simplifiedform for actual computations.

and the end conditions,

AB_ - _j+i - _/j (2.96)

At = Ps+i-Pj
/_j+i-_ (2.97)

A_2) = A./+z - Aj
,8._+, - ,8# (2.98)

_./+1

/_j÷s- flj (2.99)

,,"'(#l) = 6z_i3) (2.1oo)

8"(/_.) = 6A(._s (2.101)
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The quantities, A_, 2A_2), 6A_ s) are approximations of the first, second and third

derivatives respectively.

-A_I AB, 0 0 ... 0

A_I 2(A_I + A_2) A_ 0 : 0

o A_, 2(A_ + A_) ABs : o

".. ".. : :

: 0 0 A_3.__ 2(A___ + A_.-1) A_/.-I

•"" 0 0 0 A_._ 1 --A_n_l

×

_t

e;
Ar_2^(s) 1

M1 '_'al

A_ - A1

As - As

/A.-1 - A.-2

-A_2 A (s)
_n-1 t_-3

The above system of equations has the followingimportant characteristics.

I. The matrix is diagonal.

2. The matrix is symmetric.

3. The matrix is nonsingular and tridiagonal.

4. Eft;dent matrix reduction techniques available for solution.

The original cubic polynomial is given below along with the coefficients in terms

Typically, the cubic spline is written in the following form.
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In the interval (_j,_j+l),

j3j _/3 __ ]3j+_ (2.103)

bj = P_+_- PJ #t

A/3j A/3J(PJ +1 + 2P_') (2.104)

cj = 3P;' (2.105)

= P;+,- P;'
_S5 (210s)

The sets of coefficients are stored for the n - 1 intervals and the function values

and its derivatives are computed whenever they are needed.

P'(B) = bj + 2c_(Z-Zj) + 3dj(Z_Zj),, (2.107)

P"(/_) = 2cj + 6dj(/_-/_j) (2.108)

2.7.4 Leakage

The mass flow rate, dQ, through the differential element hoRdE shown in Figure 2.9

is given by,

dQ = uo(O,_)poho(O,_)Rd_ (2.109)

axial velocity at inlet

film thickness at inlet

radius of the rotor

P0 density of fluid

The above expression is integrated around the circumference of the seal at the

inlet to give the total mass flow rate or leakage, Q.

where,

**o(O,_)

ho(0,_)

R
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y Y

X

Figure 2.9 Leakage

Q = fo'",,.o(O,#)poao(O,,O)p,.d,O (2.110)

2.7.5 Steady State Seal Forces

The reactive seal forces acting on a non-vibrating rotor are obtained by integrating

the zeroth order pressure field, p0(z,_), around the rotor and along the length of the

seal.

The X and Y components of force acting on the differential area element Rd]3dz,

shown in Figure 2.10, are given by,

-aF= = _,(=,_)co_ Rd_dz

-dF, = po(=,,e)oi,.,B_d_

(2.111)

(2.112)

Integrating the above force expressions over the entire surface area of the rotor
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Figure 2.10 Steady State Sea] Forces

seal

Figure 2.11 Force Geometry for Seal
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Y X

Z

yields,

Figure 2.12 Frictional Torque

L/2_
- F, - po(z,_)cos/3 Rd_dz (2.113)dO JO

- F_ - foL fo2"po(Z,_)sin_ RdBdz (2.114)

The angle made by the resultant seal force F with the X-axis is defined as the

load angle and is given by,

= _"n-l(-F_) (2.115)-F,

F = + (2.116)

The resultant seal force is also known as the load bearing capacity of the seal.

This resultant seal force must balance against the external load (preqoad) applied

by the rotor on the seal. The pre-load may vary in magnitude and direction as the

pumps's speed or power-level changes.

2.7.6 Friction Loss

The frictionloss or horse power losscomputation isillustratedin Figure 2.12.

The frictionaltorque on a differentialelement Rd_dz due to frictionat the rotor
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surface is given as,

dr = R_,.t,Rd_dz (2.n7)
hop _ _ (v-w)

-_,,t, = _o-_ + _{/._R.-/, _ n,} (2.118)

where f,o isthe rotorfrictionfactorand r,q],,isthe shear stressat the rotor surface.

Total frictionaltorque, F, over the entirelength of the rotor isgiven by,

= - f." fo'" -,I,R'd dzF

and the power loss due to friction is (dropping the negative sign),

Power Los8 = rw (2.12o)

where w is the rotor rpm in rad/s.

2.8 First Order Boundary Conditions

The firstorder boundary conditions are obtained by perturbing the zeroth order

boundary conditions of Eqs. (2.51,2.54,2.56).

p1(0,_)= -(i+ _,)p0_0(0,_)_1(0,_) (2.121)

vl(O,/_) = 0 (2.122)

pt(L,,8) = 0 (2.123)

2.9 Solution Procedure for First Order Equations

The setof firstorder equations in Eqs. (2.36-2.38)are furtherreduced by employing a

separation of variablestechnique for an assumed small motion of the vibrating rotor.

The assumed form ofperturbations forthe dependent variablesand filmthickness
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Y
steady state po_Uon

I
I

/

x

eUlpUea] whirl orbit

wh_'I/_ rotor

Figure 2.13 Elliptical Whirl Orbit

are_

u = Uo + eul (2.124)

v = Vo + evz (2.125)

P = Po + epl (2.126)

h = ]_o + ehz (2.127)

The rotor is assumed to execute a whirling motion with an elliptical orbit as

shown in Figure 2.13. The figure shows the steady state operating position of the

rotor along with the vibrating (whirling) rotor. Let the semi-major and semi-minor

axes of"this perturbation ellipse be given by (X, Y).

The perturbation e may be considered to be a combination of two individual

perturbations e= and %. This assumption is the basis for eccentric seal analysis

where the dependent variables vary in the circumferential direction as opposed to
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the concentric case where they remain constant in the circumferentialdirection.The

magnitudes of these perturbations are arbitrarysincethey do not form a part of the

final solution. These perturbations are assumed to be infinitesimally small and is

the basis for neglecting second and higher order terms in the perturbation analysis.

These perturbations, effiand _ffi,are the non-climensionalized axes of the whirling orbit

as given below.

_ul = --ulz ÷ --u1_ (2.128)
C, C.

_vl = --v1= + --vl_ (2.129)
C. C.

_PI = --P1_ + --PI_ (2.130)
C, C,

,hi = Xh., + (2.131)
C. C.

where c. issome nominal clearanceused to non-dimensionlize the perturbations.

Let the perturbations be redefined in the followingnon-dimensionalized form.

k
AQ = __ (2.132)

c.

?
A% = _ (2.133)

C.

Substituting Eqs. (2.132-2.133) in Eqs. (2.128-2.131)yields,

_ul = A_,,ul, + A%ul_ (2.134)

_'°l -" Acz'Ol, + A%vl_ (2.135)

ep1 = A_=pI, + Ae_px_ (2.136)

_hl = A_,_hl,_ + Aq, hts, (2.137)

Assuming that the rotor whirlsabout itsequilibrium positionin an ellipticalorbit

whose center is located at (Zo,y0),then the position of the center of the vibrating
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Figure 2.14 Perturbation Orbit

rotor relative to its static eccentric position is given by (Figure 2.14),

z - zo = ](eos_t

Y - Yo = _'coswt

Let a = wt, where w is the angular velocity of the rotor given in rad/s.

perturbed film thickness expression may be rewritten as,

or,

h(z,_,t) = ho(z,/3)- (Z-Zo)eOS/3- (y-yo)sinl3

h(z,Z,t) = h0(z,Z) + _hl(z,Z,t)

From the above equation, the perturbation in film thickness ehl is given as,

ehl (z, _, t) = - ff eosaeosB - _'sinasin_

(2.13s)

(2.139)

The

(2.140)

(2.141)

(2.142)
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or

hi = --C*{Ae_ cosa cos�3 + A% sin-, sin�3}

Oh1 = _
_{--Ae_ sina sin�3 + Ae_ sina cos�3}

0/3
Ohx we.

Ot = --_{--Ae=e sina cos�3 + Ae_ cosa sin�3)

(2.143)

(2.144)

(2.145)

The right hand size of the system of first order equations (Eqs. 2.36-2.38) consists

of harmonic forcing functions ho, _8. , O---hiaa,hx, _t, and _. These functions are

essentially harmonic functions from Eqs. (2.143-2.145) Based on this fact, the solution

isassumed to be harmonic functions of a and/3.

pl. = al(z,/3)co._ + a.(z,/3).i._

ll,ly -- _(Z,/3)CO.Ot-_-b4(z,/3).iT_ot

V_ = bs(_,B)_o._ + b_(_,/3).i._

(2.146)

(2.147)

(2.148)

(2.149)

(2.150)

(2.151)

Using the above substitutionsin the set of firstorder equations Eqs. (2.36-2.38)

yields 12 coupled linearpartialdifferentialequations. This set of equations are given

in Appendix A, for the constant propertiesmodel.

The solution procedure for the 12 linearPDE's is exactly the same as that of

the zeroth order solution. The integrationis performed with a 4-5th order Runge-

Kutta method, predictor-correctormethod and Adams methods. All the methods

yield almost identicalresults,with the Runge-Kutta based method being the fastest.
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2.9.1 Comparison with Nelson and Nguyen's Approach

The original analysis assumed the variables, a_ and b_ to be harmonic and separated

them into two auxiliary functions of the form,

_,(_,_) = .f,(,,)_,Z + g_(_),i,-,Z (2.152)

where .f_(z) and g_(z) are assumed not to vary with 3. Nelson and Nguyen (1988a,

1988b) thereby apply a second separation of variables substitution to the first order

differential equations. While the above form of assumed solution yields results that

agree with available experimental results, an examination of the numerical values of

the functions f_(z) and g_(z) revealed a 3 dependence, particularly at eccentricities

above 0.5. The inclusion of the circumferential gradients of these variable should

therefore improve the solution at higher eccentricities.

The al and b_ in the current analysis are totally general functions of z and

which thereby avoids the mathematical contradiction discussed above. Furthermore,

in many cases the results of the current approach show better agreement with exper-

imental results than the earlier results.

2.9.2 Boundary Conditions of Assumed Variables

The first order boundary conditions are expressed in the assumed solution variables

are,

az(0,3) = -(1 + _)pas(0,3) (2.153)

a2(0,3) = -(1 + _)pa4(0,3) (2.154)

a,(0,3) = 0 (2.155)

,,,(o,_) = o (2.156)
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,,l(L,f_) = 0

a_(L,_) = 0

bl(O,_) = -(1 + _,)p_(O,f_)

b,(O,B) = -(z + _,)pb4(O,_)

b,(O,_) = 0

b_(o,_) = o

b_(L,_) = o

b_(L,f_) = o

(2.157)

(2.15S)

(2.150)

(2.180)

(2.161)

(2.162)

(2.163)

(2.164)

2.9.3 Solution of First Order Equations

The same solution procedure that is used for the zeroth order equations is used to

solve the reduced first order equations given in Appendix A subject to the boundary

conditions of Eqs. (2.153-2.164) for variables a_(z,_) and bi(z,_).

2.10 Determination of Dynamic Coefficients

In this section, dynamic coefficients are derived form first order pressure distribution

pl(z,_,t). The following linearized force-motion model for a 2-DOF vibration is

used to define the rotordynamic coefficients. In this equation, Az and Ay define the

displacement of the rotor relative to a static operating point and _Fffi, AF_ are the

components of the perturbed force due to first order pressure field, pl(z,_,t) The

significance of each of the linearized coefficients have been explained in Chapter I.

+ /
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+ (2.1ss)
-mr., mu_ A_

The perturbed or incremental force components acting on the rotor due to a

small motion about a static eccentric position (z, y) is given by integrating the first

order pressure field,

The perturbation motion is described earlier by an elliptical orbit. The dis-

placements, velocities and accelerations at any point on this elliptical orbit are given

by,

Az = Yfcoswt

Ay = Ysinwt

A _ = -w fC ,inwt

All = -w f"coswt

Ak = -w2_coswt

All = -w_Y'sinwt

(2.1ss)

(2.189)

(2.17o)

(2.171)

(2.1T2)

(2.173)

At wt = O, simot = O, coswt = 1 and Ay = A_ = A!7 = 0. Substituting these

valuesin Eq.(2.165),

AF.
= A,.{-K.. - M..,,,'} + Aq,{_.,,}c,,

AF.
-_ = zx_{-_ + m,,.,,,'} + a,.,,{c,,,,,,,}c..

(2.174)

(2.175)

At wt = _, sinzot= I, coswt = 0 and Az = A_ = A_ = 0. Substituting these values
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in Eq.(2.165),

AF,

c. - Ae,,{c._w} + A%{K¢_- Mww _} (2.177)

From the following relationship between the first order pressure and the assumed

variables, a_ and bl,

epl = Aeffipaffi + A%pl_ (2.178)

Plffi and PI_ may be expressed as,

Pl_ = aacosa + a2sina (2.179)

PI_ = blco$a + b28ina (2.180)

Equating Eqs.(2.166-2.167 and Eqs.(2.174-2.177) and dropping the perturba-

tions, the following relations for the dynamic coefficients are obtained.

c..

c_ = - b_o_R_a_ (2.182)

1 foI, fo2,Cal,ineRd_dz (2.183)- k_ + m_, 2 = _

1 r. 2,r

Cww - -_ fo fo bl,_in;gRd_dz (2.184)

1 ;L f'"a,co,_gRd_dz (2.185)

k_ - m_.,,' = -_ Jo .Io b2co,/3Rd_dz (2.186)

1 f0Lj;"c'u'.w = -- a2,_in_ Rdl3 dz (2.187).c,,

c..
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These 8 equations must be evaluated for at least two whirl frequencies to obtain

solutions for the 12 dynamic coefficients. A least squares approach is employed for this

step. Typically, 2-4 whirl frequencies are used in a least squares scheme to compute

these coefficients. Also, the dynamic coefficients for an annular seal are essentially

independent of whirl frequencies. The 2-D integration performed numerically is an

improvement over the average value approach employed by the Nelson and Nguyen

(1988a, 1988b).

2.11 Dynamic Coefficients based on External Load Specification

TypicaLly, for seals the dynamic coefficients are computed as a function of eccentricity.

This assumes that the eccentric position of the shaft has been specified and the

resultant reactive force due to the pressure distribution in the seal is to be determined.

In some cases, it is possibh to specify the angle at which external load is supported

by the seal during the operation of the turbomachine. For example, unit 3-01, an

experimental seal under design at NASA (results to be discussed later) supports the

external load at a constant angle of 290 ° in the rotor coordinate system as shown in

Figure 2.15.

The problem now is to determ_e the eccentric position given an external load

F and its load angle q,. This is accomplished by iteratively searching for an eccentric

position e of the rotor which produces a pressure distribution p0(z,3) which when

integrated over the entire seal balances the applied load in magnitude and direction.

This iterative search is carried out using a modified 2-D Newton-Raphson method

discussed below.
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Figure 2.15 Example of External Load acting on a Seal
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F: sea/ force
/_: load ar_le

W: external load
4,: external load angle

X

rotor

8ul

Figure 2.16 External Load and External Load Angle

2.11.1 Steady State Force Equilibrium Position

A modified 2-D Newton-Raphson method isused to locatethe operating position.At

the steady stateequilibrium position,

Let F, and F_ be the X and Y components of the sealforce obtained by inte-

grating the pressure fieldwithin the sealfor a given rotor position (z,y). Let Fz and

F, be the components of the external load.

A = F,_ + F. (2.189)

f_ = F_ + F_, (2.190)

where fz and f_ are the residual forces in X and Y directions respectively. The

problem reduces to finding (x,y) such that the residual forces f. and f_ are zero. In

other words, find a rotor eccentric position such that F. is balanced by F. and F_ is
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balanced Fv.

The iterative search is described by,

zk+l = z_ + Azk (2.191)

Yk+i = yh + Ayk (2.192)

and the increments Azk and Ay k are computed from Eq. (2.193).

8z 8y

O= Ou.

(2.193)

The derivativesin Eq. (2.193)are computed using a forward differenceformula as,

OF. F,_(=+ a=,_)- F.(=,_)
Oz -- Az (2.194)

OF. F=(z,y + Ay) _ F=(z,y)

Oy - Ay (2.195)

OFs, F_(z + Az, y) - F_,(z,y)

Oz - Az (2.196)

OF,, F_(=,_+ a_) - F,,(_,v)
cgy - ay (2.197)

The iterative search stops when the residual forces .f= and f_ are below some

specified tolerance. Once, the eccentric position is determined, the computation of

dynamic coefficients is carried out as before.
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CHAPTER III

VARIABLE PROPERTIES MODEL

The effect of variable fluid properties as related to liquid seals for cryogenic applica-

tions was first investigated in some detail by Simon and Frene (1989). Their initial

work did not include fluid inertia effects and the analysis was based on a simplified

Reynolds equation. San Andres (1991) developed a seal analysis that included vari-

able fluid properties as a function of local pressure and a mean temperature. He

used the NIST 12 Database, MIPROPS (1986) to compute the fluid properties. This

database is based on the 32-term Modified Benedict- Webb-Ruben Equation o] State.

Experimental and theoretical data is used to compute the coefficients of the terms in

this equation of state and data is available for a number of fluids.

The working fluid in SSME turbopump is either liquid oxygen (LOX) or liquid

hydrogen (LH2). Figure 3.1 shows the variation of density and viscosity of LOX a

function of pressure. Typical inlet pressures for the turbopump are in the range of

20 Mpa and the exit pressures are in the 3 Mpa range.

For a typical seal, inlet and exit conditions are given below.

inlet pressure, Pl

exit pressure, Pe

mean temperature, T*

19.0 Mpa

3.0 Mpa

90 ° K

For the above conditions, the fluid properties for LOX at inlet and exit are,

at inlet:

density, p_

viscosity, Pl

1179 kg/m 3 K

2.32 × 10 -4 Pa-s
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compressibility, _-_[T 0.0014 1/MPa

at ez/t:

density, p,

viscosity, _,

1148 kg/m 3 K

2.01x 10 -4 Pa-s

0.0019 1/MPa

For the same conditions, the fluid properties for LH2 at in.let and exit are,

at irdet:

density, p_

viscosity,/_

compressibility, _rl

42.13 kg/m s K

6.43×10 -6 Pa-s

0.03335 1/MPa

at ezit:

density, p,

viscosity,/_,

compressibility, i

8.18 kg/m s K

4.13×10 -s Pa-s

0.334 1/MPa

The change in density and viscosityfor LOX is relativelysmall (about 2.6%

and 12% respectivelyfor the above case). However, for LH2, the change in density

between inletand exit is considerable and this will have a noticeable effecton the

dynamic coefficientscomputed (San Andres, 1991). A similarchange isalso noticed

in viscosity.
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3.1 Thermophysical Properties Model

Even though the following analysis is valid for any liquid, the two fluids of interest in

this research are the cryogenic fluids, liquid oxygen and liquid hydrogen. These are

the two working fluids commonly used in the SSME turbopump.

The standard model generally used for representing the thermophysical proper-

ties of fluids is the "Modified Benedict-Webb-Ruben (MBWR)" equation of state.

This particular model is widely used to correlate thermodynamic property data and

a number of computer codes are available to tabulate the properties for various fluids

based on this equation of state. The most important of these codes is NIST Standard

Reference Database 1_, published by National Institute of Standards and Technology.

This code is available in source form and can be easily integrated into a seal code and

this code in its source form is used in the present work.

The main advantages of a MBWR based fluid property model are,

1. Accurate data availablefor a number of fluids.

2. Easy adaptability to use in a seal code.

3. Correlation of experimental data from various sources.

4. Lends itself to analytical work.

3.2 MBWR Equation of State

The MBWR equation of state in the single phase region is a 32-term equation given

below.

P = pRT +

p_(G(1)T + G(2)T 1/_ + G(3) + G(4)/T + G(5)/T _) +
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p3(G(6)T + G(7) + G(8)/T + G(9)IT=) +

p4(G(IO)T + C(ll) + G(t2)IT) + p6(G(13)) +

p'(G(14)IT + G(15)IT') + p'(G(16)IT) +

pS(GCIT)/T + GCI8)T=) + pSCG(19)/T=) +

p3(G(20)/T2 + G(21)/T s) e_p2 +.

p'(G(22)/T= + G(23)/T') e_ +

pr(G(24)/T' + G(25)/T s) e"¢_' +

pS(G(26)/T= + G(27)/T 4) e'q_ +

pn(G(28)/T2 + G(29)/T 3) e'_p' +

p13(G(30)/T= +. G(31)/T s + G(32)/T 4) e"f_

wheTe,

p pressure

p density

T absolute temperature

7 -_, pc density at T,i,

G(i),i = 1,2, ...32 linear coefficients

(3.1)

The linear coefficients G(i) are computed using experimental and analytical data

for various fluids.

The expression for viscosity is given as,

_I(T)

= p0(T) + pl(T)p + p2(p,T) (3.2)
$

,o = (3.3)
i=1

= Fv(1) + Fv(2){F_(3)- In(T/F,.(4))}' (3.4)
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F(p,T)

G(T) =

H(p)

-- eFCp,T) __ eG(T)

= E.(1) + E_(2)HCp) + E.(3)p °a +

E_(4)H(p)/T _ + E_(5)p°a/r _'s +

E_(6)/T + E_(7)H(p)/T

E_(1) + E,,(2)/T

= po.S(p_ Ev(S))/E,,(8)

(3.5)

(3.6)

(3.7)

(3.s)

3.3 Bulk Flow Governing Equations

The bulk flow governing equations for compressible flow are given by Nelson (1985).

The originalequations are derived for gas sealsand the same equations willbe used

for thisanalysisusing MBWR equation of state.

Continuity'.

c9(phu) 10(phv)
+ +

Oz R Of_
O(ph) = 0 (3.9)

Ot

h Op Ou v Ou Ou

p _z = h{-_ + ._ _-_ + U _z }

Azial Momentum:

Circumferential Momentum:

hap
pR O_

U U

+ f._v_+v= + f.Sv/u=+(,,-w) , (3.1o)

Ov v Ov Ov
= h{N + _ + u_}

(_-_)
+ .f.Sv"_ +,,_ + 2--(u, + (,_- w), (3.11)

A comparison of the above governing equations with the case of constant prop-

erties model (Eqs. 2.13-2.15) reveals that these governing equations are essentially

the same except for the continuity equation where the density term is retained within
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the derivative. The momentum equations are the same, but with a variable density

and viscosity.

3.4 Comparison with San Andres (1991)

San Andres (1991), presented an analysis for variable properties based on a finite

di_erence formulation. The solution is based on a finite di_erence scheme that is based

on a method of Launder and Leschziner (1978) and used a SIMPLEC algorithm of

Van Doormal and Ralthby (1984). In the current work, a completely diiferent solution

procedure will be used. The analysis developed for the constant properties case in

the previous chapter will be extended to the case of variable properties.

3.5 Perturbation Analysis

In this section, the set of governing equations, Eqs. (3.9-3.11) are perturbed about

their steady state values to obtain the zeroth and first order equations. The procedure

is similar to the one outlined in Section 2.5.

The assumed form for the dependent variables, film thickness and the fluid prop-

erties for perturbation are given as,

'U(Z,_,_) --- lg0(Z,_) .-_E1tl(Z,_,_) (3.12)

V(Z,_,t) = Vo(Z,_) + eVl(Z,_,t) (3.13)

p(z,_,t) = po(Z,_) + epl(Z,_,t) (3.14)

h(=,_,t) = h0(=,_) + _hl(=,_,_) (3.15)

p(=,_,t) = po(z,_) + _pl(z,_,t) (3.16)

/.=(z,/_,t)- = p.o(z,/_)+ ep,(z,/_,t) (3.17)

where u0, v0, p0, ho, p0, p0 are the zeroth order variables and Ul, _1, pl, hi, Pl, _1
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are the corresponding first order variables, and eul, £I)i, £Pl, ehl, _Pl, _1 are the per-

turbations. The zeroth order variables, p0 and #0 and the corresponding first order

variables pl, #i are not independent and will be related to the primary variables u,

v, p through the MBW'R equation of state. Substitution of these expressions into

Eqs. (3.9-3.11) and neglecting second and higher order terms yields the sets of zeroth

order and first order equations.

(zeroth order equations) + e(first order equations) = 0

3.5.1 Zeroth Order Equations

The zeroth order equations are given by,

Continuity:

Azial Momentum:

O(pohovo) 10(pohoVo)
+ = o (3.18)

Oz R O_

ho Opo
Po Oz = ho{_ OqUo Ouo}+ uo-b-;

+ J.o_v"o + Vo2 + J-o 2 V o+ (vo w) _ (3.19)

Circumferential Momentum:

poR O# ho{ _ OVo OVo.O# + uo-_)

vo (vo- ,,,)V,u_°+ (,,o- ,.)_+ S.oyvC_+,,o_ + S,o 2 (3.20)
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3.5.2 First Order Equations

The first order equations are given below.

Continuity:.

povo Oht poho c3vl voho c3pz . auz

R O# + 1t 0[3 + R a# + P°n°-_z +

ahl ahl
+A_ul + A_vl + Appa = -pouo az Po at

Azial Momentum:

(3.21)

hovo OU1 . OUlR OB + n°u°'_z + ha + B_ua + B_vl + Bppl

+ Bu#I = Bhhl (3.22)

Circumferential Momentum:

hovo Ovl ha apl
+

R a_ po a_
. avl. Or1

+ nouo'_znO--- _ + Cuul
+ C_vl + Cppt

+ Cu#z = Chhz (3.23)

where the coefficients A_,, A_, ... etc. _e functions of steady state variables Uo, Vo,

Po and their axial and circumferential gradients.

3.6 Zeroth Order Boundary Conditions

The boundary conditions are similar to the constant properties model, except for

exit pressure term which is retained for the variable properties case, since the fluid

properties vary with pressure. The boundary conditions for zeroth order equations

are shown in Figure 2.6.
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The following is a summary of the boundary conditions for the zeroth order

equations.

At the/n/et:

a._al velocity, Uo:

prior to inlet:

right after inlet:

circumferential velocity, Vo:

uo(O,/3) = 0 , (3.24)

= (3.25)

pressure,Po:

prior to inlet:

vo(O,_) = psr x wR (3.26)

po(O,/3) - Pl (3.27)

fight after inlet:

po(0,_) - po1(0,_) (3.28)

The pressurespi,poI(0,/3)and axialvelocityUo_(0,_) at the inletare relatedby,

I 2
Pi - Poa(O,_) = _po(O,/3)Uol(O,/9)(1 + _ci) (3.29)

At the exit, the exit pressure recovery coefficient is assumed to be 1, i.e.,

1

po2(0,/3) - p, = _po(0,/3)Uo22(0,/3)(1- 1) (3.30)

or_

po2(0,/3) = Pe (3.31)
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Eq. (3.29) may be rewritten as,

PDI(0,_) -- Pi --

Or

_po(O,_),,o'_(o,_)(1+ _,) (3.32)

2u01(0,_) = po(0,_)'(1 + _,) (p' - pol(0,_)) (3.33)

At the outset, pol(0,_) is unknown and must be solved iteratively by requiring

that the pressure distribution at the seal exit satisfies the following condition.

po=(L,B) = p. (3.34)

subject to the constraints of Eqs. (3.26,3.29)

3.7 Reduction of Zeroth Order Equations

I_ the following analysis, the original zeroth order equations are reduced into a form

suitable for the solution procedure developed in Chapter II.

The fluid properties are, in general, functions of local pressure and temperature

as given below.

p -- p(p,T) (3.35)

= _(p,T) (3.36)

The dependent variables, pressure p and temperature T are functions of the axial

and circumferential coordinates, (z,/_).

p - p(z,_) (3.37)

T = T(z,_) (3.38)
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or Eqs. (3.35,3.36) may be rewritten as,

p = (3.39)

(3.40)

Using chain rule for differentiation, the terms _ _ o_ a__ w_ch represent' ' 8/_' 8=1

the changes in fluid properties with respect to axial and drcum£erentia.1 coordinates,

are expressed (subscript 0 refers to zeroth order variables) as,

Opo Opo Opo c3po OTo

O'-'_ = Opo Oz + OTo c3z (3.41)

Opo Opo O_ Opo OTo

0B = Opo OB + 8To 0$ (3.42)

0_o 0_o Opo O_ OTo
O--_- = Cgpo Oz + OTo Oz (3.43)

0_o 0_o O_ 0_o OTo
07 = + OToa# (3.44)

In the following analysis, fluid properties are assumed to be a function of the

local pressure and a mean temperature, T °.

p = p(p,T') (3.45)

p = #(p,T') (3.46)

In other words, the fluid flow is treated as an isothermal flow and the fluid

properties, density and viscosity are are assumed to vary as function of local pressure,

p(z, _), only. For a constant temperature field, the partial derivatives with respect to

temperature T in Eqs. (3.41-3.44) vanish giving the following simplified expressions.

Opo Opoapo
O"-"_ = Cgpo Oz (3.47)

Opo apoOpo
c9-"_" = Opo 0D (3.48)



74

0-"_- = _po Oz (3.49)

87 = Opo (3.50)

_ Rate of change of density with pressure

_ Rate of change of viscosity with pressure

a= Axis] pressure gradient

_P0a_ Circumferential pressure gradient

The term _p_is related to the compressibility of the fluid and is usually represented by

the dimensionless parameter, isothermal compressibility, 1; _ T. A larger isothermal

compressibility signifies a more compressible fluid.

Using these relations, the Eqs. (3.18-3.20) may be rewritten as given in Appendix

B, Eqs. (B.1-B.4). For constant properties, i.e., an incompressible fluid, p0,po --

constant, or, _0-_- a__ _ 0, and the Eqs. (B.1-B.4) reduce to the Eqs. (A.1-A.4) of

the constant properties model.

As in the case of constant properties model, the reduced zeroth order equations

may be rewritten with all 3-dependent terms on the right-hand side as,

8z F,(uo, Vo,Po, as, aS,

Fp(uo, Vo,P0, 8_, 8_,

The functions F,,, F,, Fp for the variable properties model are given in Appendix B.

3.8 Solution Procedure for Zeroth Order Equations

The solution procedure for zeroth order solution is exactly the same as discussed in

Section 2.7. The only difference is"that the fluid properties and their dependent terms

are updated at each grid point during numerical integration.
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3.9 Reduction of First Order Equations

The original first order equations given in Eqs. (3.21-3.23) are reduced simila_ the

zeroth order equations.

The first order variables in the first order equations, Eqs.(3.21-3.23) are ul, el,

Pl, Pl, Pl. Out of these variables ozLly ul, el, Pl are primary variables. The remaining

two variables pl, Pl are related to pl using the property relations based on the MBWR

equation of state.

The relationship first order variables Pl and Pl is given by

where,

Pl = A,lpl (3.52)

Apl Op
-- _pp (3.53)

The above relationship is obtained by perturbing the MBWR equation of state with

respect to pressure and density and equating the terms on both sides. From a different

perspective the ratio p,_ is a ratio of two infinitesimally small quantities, which is

nothing but the derivative
op"

In the expression for viscosity given in Eqs. (3.2-3.8), the relation between pres-

sure and viscosity is not explicit. Let the first order variab]es pl and pl be related

as,

_1 -" B.lPl (3.54)

where_

B.1 = a____
Op (3.55)

The first order variables pl and/-,1 are then related through,

Pl "- A.lpl (3.56)
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where,

A.z = ApIBm (3.57)

Theterms-_and_,areobtainedbydi_erentiatinsEqs.(3.1,3.2-3.8)withre-

spectto density p and viscosity p respectively and these expressions are given in

Appendix F.

Using the relations Eqs. (3.52-3.57), the first order equations are rewritten in

terms of the primary first order variables ua, vl and/71.

Continuity.

povo ahl poho Ova Vohe Opl , 0ul _zR 0/3 + R 0/3 ÷ R 013 + P°a°'_z + uoho + hoApx

0hl Oh1

+A,,ua + A_vl + Appa = -poue Oz po_ Ahh_ (3.58)

Axial Momentum:

hovo 011.1 . OUl ho 0pl h O_l

R 013 + n°UO_z + + + B,,ul + B,,vl + Bt, plpo Oz -" Ot

= Bhhl (3.59)

Circumferential Momentum:

ho'vo 0'o I h 0 0pl _ ha 0'u1R 013 + + houo + + C,,u_poR 013 -" Ot
+

The coefficients A,,, A,.. for a variable properties model are defined in Appendix B.
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3.10 First Order Boundary Conditions

Perturbing the zeroth order boundary conditions of Eqs. (3.26,3.29,3.34) yield the

following first order boundary conditions.

At the/n/et:

circumferential velocity, va:

pf'eS$Ure_ Pl :

vl(O,a) = 0 (3.61)

1

p1(0,_) = -_{2po(0,_)u0(0,_)ul(0,a)

At the exit:

prc38Ure_ Pl :

+ (3.62)

p_(O,/3) = 0 (3.63)

Using the relation between Pz and Pl, Eq. (3.62) may be rewritten as,

{I + 0.5(I -I- _i)u_i(0,/3)_} {(1 + _i)p0(0,/3)Uo(0,//)}u1(0,/3)(3.64)

3.11 Solution of First Order Equations

The same procedure developed for the constant propertiesmodel isused for thiscase.

The set of firstorder equations in Eqs.(3.58-3.60) are further reduced by employing

"separation of variables" teclmique for an assumed small motion of the vibrating

rotor.

The right hand sizeof the system of firstorder equations consistsof harmonic

forcingfunctions ho,_-_=,_'_a'hl,_, _z=.Based on thisfact,the solutionisassumed
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to be harmonic functions of a and/_.

p,= = ,,l(,,,_)co,_, + ,,,(=,_),,,,,,_ (3.65)

,,1= = a3(z,_)co,,-,+ ,,,(=,_),,,,_, (3.66)

(3.67)

p,, = b,(z,_)_o,,_+ b,(=,d),,,,,a (3.68)

,,1,, = b3(;,_)_o,,-.+ b,,(z,_).,,.,,. (3.69)

,,1,, = b,(z,_)co,,.+ b,(z,_),,,,,., (3.7o)

Using the above substitutions in the set of first order equations Eqs. (3.58-3.60)

yields 12 coupled linear partial differential equations.

The first order boundary conditions expressed in the assumed solution vm'iables are:

(1+ &)po(O,_)a,(o,_')al(o,z) =
-{1 + 0.5(1 + _c_)Uo=1(0,,8)_ } (3.71)

a.(o,_) = (1+ _,)po(O,B)a,(o,_)
{1 + 0.5(1 + ,_,)Uo=z(O,/9)-_} (3.72)

a,(o,_) = 0 (3.73)

a6(0,/3) - 0 (3.74)

al(L,/_) -- 0 (3.75)

a,(L,/3) = 0 (3.76)

b,(o,,a) = (1+ &)po(O,_)b_(o,_)
{1 + 0.5(1 + _c,)Uo=z(O,/3)-_} (3.77)

b,(O,_) = (1+ &)po(O,_)b,(o,/3)
{1 + o.5(1+ ,',),41(0,_)-_} (3.78)

bs(0,/_) = 0 (3.79)

b,(0,_) = 0 (3.80)
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The solution procedure follows the same steps as explained in Chapter II.
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CHAPTER W

THERMAL EFFECTS MODEL

Yang et al. (1992) and San Andrea et al. (1992) conducted a thorough investigation

of thermohydrodynamic (THD) analysis for cryogenic seals. Yang developed an ap-

proximate THE) analysis and provided steady state solution for the case of a centered

seal. San Andres (1992) introduced a full set of bulk flow governing equations for

THD analysis and investigated it with a finite difference based numerical solution.

The results from their study show that for some cryogenic fluids temperature rise due

to friction at the rotor surface may lead to a two phase flow, seriously affecting the

performance of the turbomachine.

The goal of this work is to extend the solution procedure developed in previous

chapters to a THD analysis. The governing equations used for this analysis are based

on San Andres et al. (1992) and are given in Eqs. (4.1-4.4). In the analysis developed

in this chapter, the zeroth order equations will be solved for the primary variables,

Uo, vo, p0 and To for a centered seal. The temperature distribution wK1 then be used

with the variable properties model developed in Chapter III to compute the dynamic

coefficients. In other words, perturbation due to temperature are not included in the

analysis. The goal is to show the viability of current analysis to handle thermal effects

of the energy equation.

Continuity:

_-(ph) + _---_(phu)+ ff--_(phv)= 0 (4.1)

Azial Momentum:

(4.2)
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Circumferential Momentum:

_(phv) + _(ph_v)+ =

Energy Equation:

Cp{ _(phT) + _z (phuT) + _-_(phvT)} + Q, = Tl_,h{OP__t + V_qq + U_z}0p Op

(4.3)

+ wR(r_lh ) - v(r_[o h) - u(r,_[o h) (4.4)

where, q = R_ and the shear stress terms, r_, r_ etc., are given as,

_-Io_ - _, _,- -p(fo_V'_u: + v _ + f,._/u 2 + (v - w)') (4.5)

V

2 V/u'+(v-w)_) (4.6)

r_lh hop _ v -
= 2Oq + -_{fo_R, - f,(v W)R_} (4.7)

The heat transferred, Q, is given by,

Q° = 0 (4.8)

= h,.(T- T,.,t.,,.) + h°(T- T,,,a) (4.9)

Eq. (4.8) is for adiabatic case where there in no heat transfer, while Eq. (4.9) is for a

general ease. The stator and rotor Reynolds numbers are given as,

R. = 2Phv_+_.
/J

The heat transfer coefficients for rotor and stator are given by,

v.(I.)(_,c,, zh.(=,q) = pc,_/_. + _- -T- )-

f,)(_c,h,(_,q) = pC,_/_,+ (_- _):(T -T-)-}

(4.10)

(4.11)

(4.12)

(4.13)
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The fluid properties, density p and viscosity p are assumed to be a function of

local pressure and temperature. MWBR equation of state is used to represent the

fluid properties.

The variation in fluid properties with respect to the axial and circumferential

a__ _ _ are expressed as (Eq. 3.39-3.40),coordinates, _, 8= ' a_, a=

Opo OpoO_ OpoOTo
O-'-_ = Opo az + OTo Oz (4.14)

Opo OpoOpo OpoCOTo
CO'-"_ = COpoco# + COToCO# (4.15)

CO#o COlicCOpo CO_,o COTo

CO'T = COPoCOz +COTo COz (4.16)

CO_,o CO_,o COpo COp,o COTo

c9# = COpoc9# + COToCO# (4.17)

where e_ e_ ep, sT, are the circumferential gradients of the primary variables,
8_' 8,8' 8,8' 8_

u, v,p, and T respectively.

Using these relations, Eqs. (4.1-4.4) may be rewritten as,

(4.18)

COu COu _zph O_ + phU_z + phv-._q = -h + r,._loh (4.19)

COv COy -h_qq + re_loh (4.20)p h a'_ + p h -_z "4"p h v -._q =

COT COT

pCph { O-_ -Jru-'_z + v-._q } + O,
cop cop

T #,, h { O'O_t+ V -_q + U _'-z }

+ ,.,.,R(',',,,,Ih)- ',,(',',,,Ioh)- ',,(.',-.,,Io (4.21)

where_

p density
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P

8T

c,

k

L

/,

dynamic viscosity

rate of change of density with pressure

rate of change of density with absolute temperature

specific heat at constant pressure, _ Ip

volumetric expansion coefficient, 1

thermal conductivity of fluid

stator friction factor

rotor friction factor

4.1 Zeroth Order Equations

The zeroth order equations are obtained by dropping the time dependent terms in

Eqs. (4.18--4.21).

The above equations may again be written in the following fastLion.

_0
8z

8z

8,

eTo)

Fp(uo, Vo, po,To, 8_b_,aB' a_'

(4.22)

The functions F,,, F_, Fp, FT are given in Appendix C.

4.2 Zeroth Order Boundary Conditions

The boundary conditions for the zeroth order or steady state equations is illustrated

in Figure 4.1.

The following is a summary of the boundary conditions for the zeroth order

equations.
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inlet

PO z p!

To" Tl

VO- pm'(wR)

Uo-- 0

Y

exit

jP,o,

Uo t

I

i

o./
L.

Po= P.

Z

Figure 4.1 Zeroth Order Boundary Conditions

At the/n/et:

azial velocity, uo:

prior to inlet:

right after inlet:

circumferential velocity, Vo:

,,o(o,#)= o

,,o(O,B) = ,,o_(O,#)

(4.23)

(4.24)

vo(O,#) = par x _R (4.25)

po(O,#) = p, (4.26)
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rightafterinlet:

temperature, To:

prior to izL]et:

xightafterinlet:

p0(0,_) = p01(0,_) (4.27)

To(0,_) = (4.28)

To(0,B) = To_ (4.29)

The pressures p_, po1(0,/3) and axial velocity Uo1(0,/3) at the inlet are related by,

1

P, - po1(0,/3) = _po(0,/3)Uo=z(0,/_)(1 + _c,) (4.30)

u°=z(0'/3)(1÷ _c_){1 po(0,/3)(1- T_/3_)} (4.31)ro(O,_) = T, 2c_ p,

4.3 Solution Procedure for Zeroth Order Equations

The solution is based on an iterative procedure and the steps involved are explained

below.

The continuity and momentum equations are solved using the solution procedure

developed in previous chapters. At the outset, a nominal temperature distribution is

assumed for the entire flow field. Typically, a constant temperature, T_, temperature

at inlet, is assumed. At the end of convergence of the continuity and momentum

equations for a given temperature field, the energy equation is integrated using the

updated variables u, v and p. from the previous iteration. At the end of one complete

integration of energy equation, a new temperature distribution, T,_._ (z,/3), is available

and it is used to update the fluid properties.

The set of continuity and momentum equations are again solved with the up-
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dated propertiesuntil the solution converges.The new u, v, and p are then used in

the integration of the energy equation to obtain a new updated temperature distribu-

tion. The cyclic procedure is repeated until two successive temperature distributions

converge to a specified tolerance.

Typically, it takes about 6--8 iterations for the solution to converge.

4.4 Comparison of Current Analysis with San Andres et a/.

San Andrea eta/. (1992), uses a finite difference scheme to solve the coupled, nonlinear

PDEs of continuity, momentum and energy equations. The procedure they use is

based on the forward marching solution of Launder and Leschziner (1978) and uses

S MPLEC algorithm of Van Doormal and Raithby (1984). The flow domain is divided

into control volumes and governing equations are integrated on the control volumes to

give sets of nonlinear algebraic difference equations for each primary variable. Then

they implement an iterative procedure where the continuity and momentum equations

are solved followed by the energy equation. The continuity and momentum equations

are allowed to converge to an intermediate limit and then the energy equation is

solved. Fluid properties are updated and the procedure is repeated until the solution

converges.

The main advantage of the solution procedure used in the current work is its

simplldty,

In the current work, an iterative procedure based on the

direct integration of governing equations, is implemented. The problem is reduced to

repeatedly solving a system of 3 ODEs until the temperature distribution converges.

San Andres et al. reported that their method requires about 20 iterations for

the solution to converge. Current solution procedure takes about 6-8 iterations to
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converge.

4.5 First Order Solution

The equations used for first order solution are the same as variables properties model.

As mentioned earlier, the goveraing equations are not perturbed with respect to

temperature T. The temperature distribution obtained from the zeroth order solution

is used to update the properties as a function of local pressure and temperature and

the dynamic coefficients are computed using the variable properties model of Chapter

III.
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CHAPTER V

ARBITRARY PROFILE SEALS

The typical seal geometry of an interstage seal of SSME turbopump has either a

straight or a tapered (convergent) axial profile as shown in Figure. 1.2. This nominal

seal profile may be altered during the course of its operation, for example, as in

the case of SSME interstage seals clue to mechanical and thermal distortions. An

example of predicted seal profile of an interstage seal is shown in Figure 1.3. Tests

at NASA/MSFC reveal that seals initially designed with a large conv_gent taper

have become divergent over a part of the length of the seal during the course of their

operation changing the dynamic characteristics of that seals.

For the purpose of this study, an arbitrary profile seal is a seal whose geometry in

axial and circumferential directions may vary in any specified fashion. For example,

the distorted seal shown in Figure 1.3 would be an example of an arbitrary profile

seal.

This change in the seal profile may be due to distortion such as in the interstage

seals of SSME turbopump or by design itself in order to enhance some optimum

dynamic characteristics of the seal. It has been known for a long time that convergent

zeroth degree first dqree second degree third degree

Figure 5.1 Examples of Sea] Axial Profiles
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seals provide a higher stiffness than a straight seal. It is also a fact that divergent

seaLs under certain conditions lose stiffness with eccentricity. Generally, of all the

variables that go into the design of an annular seal, the variable that can be easily

modified is the profile of the seal whether it be a straight, tapered or more exotic

shapes. As will be shown with reference to an elliptical seal, even a small change in

seal profile can have a noticeable effect on the dynamic characteristics of the seal.

The fact that dynamic coefficients can be varied with the profile may be used as a

design criterion to build a seal with a set of optimum dynamic characteristics.

5.1 Example of an Arbitrary Pro_e Sea]: Elliptical Sea]

AnnuLar seals initially designed with a circular cross section have been found to ac-

quire, under load, an oval shape similar to an ellipse. Currently, investigations are

being carried out to study the effect of such a change in profile on the flow rates and

dynamic characteristics of these seals. This is the motivation behind the following

study of an elliptical seal.

An elliptical seal is an annular seal with an eKiptical cross-section as shown in

Figure 5.3. The clearance function for this seal varies in the circumferential direction

as opposed to a constant clearance for a typical straight or tapered seals with circular

cross-sections. The degree of curvature of the elliptical seal compared to a circular

seal is specified by the parameter ellipticity, 6 as,

6 = (5.1)
Cz

where c= and c_ are radial clearances at semi-major and semi-minor axes respectively.

For 5 = 0, the seal is a circular seal and for 6 = 1 the stator contacts the rotor

and for any value in between, i.e., 0 < 5 < 1, the seal is an elliptical seal. Figure 5.4
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illustrates an elliptical seal with various ellipticity factors.

The following different cases of axial profile are studied in detail for this elliptical

seal.

1. Straight Profile

2. Linear Profile

3. Quadratic Profile

These axial profiles correspond to zeroth, first order and second curves shown in

Figure 5.1.

The equation of an ellipse is given by,

= = acos_ (5.2)

y = bsinB (5.3)

where a and b are the semi-major and semi-minor axes respectively. At any angular

position/3 along the circumference, the radius r of the ellipse is given by,

r(z,fl) = V/(acos/3) 2 + (bsin_) 2 (5.4)

and the clearance c at this location is given by,

c(z,_) = ,.(z,_) - R (5.5)

where R is the radius of the rotor. If the semi-major and semi-minor axes of the ellipse

vary in some functional form along the length of the seat, the clearance function of

this seal is given by,

c(z,#) = v/C.f,(,,)=,,_)' + (.f,(z),,_,,#)'-n (5.6)
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Y

f ellipUeal

Cx
X

rotor

ellipticity 6

Figure 5.2 El_ptica] Seal

'- (Cx-Cy)/Cx

ol I

rolor _t

8=0 0<6<1 L-I

Figure 5.3 F_J1ipticaJ Seal with Various Ellipticity Factors,
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where f1(z) and A(z) are the semi-major and semi-minor axes variationsalong the

z-axisofthe ellipse.The function fl(z)for straight,linearand quadratic axialprofiles

are given below.

/I(_) = ,i +,,_ (5.s)

/,(_) = -I +,_ +,_ (s.9)

/,(z) = bl (s.10)

f_(z) = bl + b_z (s.11)

/_(z) = bl + b_z+ h_' (5.Z2)

where al, a2, a3, I)1, b2, bs are constants that define the curvature of the axial profile.

The curvature of the ellipse in the circumferential direction is varied using the

parameter, ellipticity 6. The ellipticity of the seal is defined as (Figure 5.3), cffi = c_

at inlet and c_ = c_ at exit. Therefore, the clearance % is given by,

= ¢.(1 - 5) (5.13)

The Appendix E provides the functions fl(z) and f2(z) for straight, linear and

quadratic axial profiles as a function of 5.

5.2 Resu]ts

Three different axial profiles are considered for the elliptical seal and their dynamic

characteristics are studied with reference to similar seals with circular cross-sections.

Results are provided for two cases.

1. Straight elliptical seal compared to a straight circular seal.
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2. EUiptical seal with a linear axial profile compared to a similar seal with a curved

(quadratic) profile.

5.2.1 Straight Elliptical Seal vs. Straight Circular Seal

The plots shown in Figures 5.4-5.7 are comparisons for a straight seal with two

dlipticity factors. For, 6 = 0, the seal is a circular (straight). For, 6 = 0.4, the seal

is an elliptical (straight) seal. The various coemcients are normalized with respect to

straight circular seal (6 = 0).

Figure 5.4 shows the variation of direct stiffness for both seals as a function of

eccentricity ratio. Even though, both seals have roughly similar stiffness to start

with, for straight elliptical seal, both K,,, and K_ decrease with eccentricity. In

other words, there is a loss in stiffness with eccentric operation.

The cross coupled stiffness in Figure 5.5 shows the opposite trend, i.e, they

increase with eccentricity, almost exponentially. Such a large in cross coupled coeffl-

cients should be a cause for concern form a stability point of view.

Damping, shown in Figure 5.6, increases slightly with eccentricity but not to the

extent of the circular seal. Leakage, shown in Figure 5.7, is smaller for elliptical seal.

In short, the elliptical seal compared with the circular seal shows the following

trends as a function of eccentricity.

1. Loss in direct stiffness.

2. Large increase in cross coupled stiffness.

3. Relatively small increase in damping.

4. Reduction in leakage.

Except for the reduced leakage rate, all other comparisons point to the fact that
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a straight elliptical seal is a bad design compared to a similar circular seal from a

rotordynamic point of view.

5.2.2 Linear Profile vs. Curved Profile

The results shown in Figures 5.8-5.11, compare the results of an elliptical seal with

a linear axial profile with a si_lA_ with a curved (quadratic) axial profile. The

results are presented for a centered sea] as a function of ellipticity, 6. The dynamic

coef_cients are normalized with respect to the coetticients for the linear profile case

at 6 = 0. The values used for this normalization are Kn = 44975 kN/m (256883

lb/in), Cm= = 21.78 kN-s/m (124.4 ll>-s/in) and k_ -- 15821 kN/m (90364 lb/in).

For this study, the mid-point clearance of the quadratic profile is made 75% of

(c_ + c_)/2, i.e., 0.75 times the mid-point clearance of a linear profile with similar inlet

and exit clearances.

The plot for direct stiffness in Figure 5.8 shows the effect of a change in profile on

the direct stiffness. For the linear case, there is a complete loss of stiffness at around

6 = 0.65. The stiffness for the quadratic profile is almost twice that of the linear

profile. Also, it retains its stiffness over a much wider range than the linear profile.

The difference in the other coefficients, shown in Figures 5.9-5.10, are relatively small.

There is a drop of about 25% in leakage for the curved profile.

Based on these results, the following conclusions may be drawn.

1. Complete loss of stiffness for linear profile at 6 - 0.65.

2. The direct stit_ess of curved profile is almost double that of linear profile.

3. There is a 25% reduction in leakage for curved profile.

This example illustrates the effect of seal profile on the dynamic coefficients. This

example shows that and an arbitrary seal profile, other than a straight or tapered,
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couldpossibly beusedasa criterion in designinga sealfor a set of optimum dynamic
characteristics.

5.3 CaseStudy of a Distorted Seal of SSME-ATD-HPOTP

The predicted clearance profile of an interstage seal of the SSME-ATD-HPOTP tur-

bopump is shown in Figure 1.3. The distorted clearance profile is obtained from a

thermo-elastic finite element analysis of the turbopump. The clearances are obtained

at six equidistant axial planes along the length of the seal with 68 clearances at each

plane. The clearances along the ckcumference are located, roughly, at equal angular
displacements.

The general procedure employed at NASA/MSFC with these distorted profiles

is to compute the average inlet and exit clearances and used them as inlet and exit

clearances of a tapered seal. In this study, rotordynamic coe_cients of the distorted

seal are compared with those computed using average clearances at inlet and out-

let. The seal geometry and operating conditions at full power level (FPL) are given

in Appendix G. The clearance function for this seal is approximated by fitting the

clearance data with bi-cubic splines. This 2-D curve fitting enables the numerical

computation of clearance, c(z,_), and gradients _, 8c at any given grid location

(z, _/). According to the manufacturer's specifications, the side-load on this seal acts

at a constant angle of 290 °. The dynamic coefilcients for this variable profile seal are

computed as a function of side-load acting at this angle. The concept of external load

based dynamic coefficients is discussed in section 2.10.

Figure 5.12 shows the the relation between seal forces and eccentricity. At zero

load, distorted profile shows an eccentricity. No load operation requires the seal to be

slightly off-centered due to the uneven distribution of fluid pressure in the distorted
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seal. Leakage, for the average profile and the distorted profile, is shown in Figure 5.13.

There is small increase in leakage for the distorted seal.

Figure 5.14 shows the variation of direct stiffness, K_, K_ as a function of

external load for both average and distorted profiles. The cross coupled stiffness

shown in Figure 5.15 dearly shows the difference between the average clearances

analysis and distorted seal analysis. There is an appreciable difference, particularly
at high loads.

5.4 Directional Dependence of Dynamic Coefficients

Typically, as in the case of a plain journal bearing, the dynamic coefficients of an

annular seal are computed in a minimum film thickness coordinate system (z', y')

as shown in Figure 5.17. The seal represented ha this figure is of a circular cross

section, similar to a plain journal bearing. In this figure, (z, y) represents the global

coordinate system fixed to the stator and is the coordinate system normally used

in rotordynamic simulations. Therefore, the dynamic coefficients irrespective of the

coordinate system in which they are computed should be transformed into this fixed

coordinate system before they can be used ha simulation studies.

For dynamic coefficients computed at eccentricities greater than zero, th eccen-

tricity is varied along the z'-axis of the minimum film thickness system and the

computed coefficients are then transformed into the fixed coordinate system using a

transformation. For a seal with a circular cross section, dynamic coefficients com-

puted at eccentricities greater than zero need to be transformed and those computed

at zero eccentricity need no transformation.

In Figure 5.17, the angle of rotation between the minimum film thickness system

and the fixed coordinate system is ¢ and is also known as the eccentricity angle as
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it defines the eccentricity vector with respect to the f_xed coordinate system. The

points O and C refer to the center of seal and rotor respectively and the line passing

through these two points is the line of centers.

The transformation of dynamic coefficients computed in a mlaimum film thick-

ness system into fixed coordinate system is explained below.

Let [QI be the transformation matrix between the minimum f_m thickness system

specitied by (z', y') coordinate system and and the global coordinate system repre-

sented by (z,y). The angle of rotation between these two coordinate systems is _,

which is also the eccentricity angle as shown in Figure 5.18. Given a dynamic coef-

ficient in (z',y') system, it is required to transform it into (z,y) coordinate system,

which is the coordinate system normally used for simulations.
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The transformation matrix [Q] and its inverse [Q]-Z is given below.

[Q] (5.14)

co8¢ -sine ] (5.15)[Q]-I = ,_,¢ co,¢

Let the set of 12 dynamic coefficients at any given eccentricity e in the minimum

film thickness coordinate system (z',y') be specified by the stiFmess matrix [K_],

damping matrix [Cq and the inertia matrix [M'].

[K'(e, 0)] (5.16)

[C'(e,O)] (5.1T)

M"
m_ (5.18)[M'(e, 0)] =

!

--Er_ M_y

Let the set of 12 dynamic coefficients at the same eccentricity e as above, but in

the global coordinate system (z, y) be given by by the stiffness matrix [K], damping

matrix [C] and the inertia matrix [M].

[K(e,¢)] = [Kn_kv, I_]Kw (5.19)
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(5.20)

•Mez Er/,ml t
[M(e, ¢)] =

-m r, M_

The two sets of dynamic coefficients are related by the following

(5.2z)

transformation.

[K(e,¢)] = [Q]-Z[K'(e,O)][Q ] (5.22)

[C(e,¢)] = [Q]-Z[C'(e,O)][Q ] (5.23)

[M(e,¢)] = [Q]-Z[M'(e,O)][Q ] (5.24)

For a seal with a circular cross section, the coefficients computed in the minimum

Klm thickness system will be the same irrespective of the eccentricity angle ¢. In

other words, coefficients computed at two different orientations ez and at ¢_ in the

minimum film thickness system will be the same. Typically, the (z',y') is aligned

with (z, y), i.e, ¢ -- 0, when these coefficients are computed. The results given in seal

literature are usually computed in this fashion.

However, this procedure is no not valid with seals of non-circular cross sections,

i.e., seals with circumferentially varying clearance functions. For these seals, the

dynamic coefficients computed in the minimum film thickness vary with eccentricity

angle and because of this the orientation of the (z', y') system with respect to (z, y)

is important. One way to handle this is to compute these coefficient directly in the

fixed coordinate system for a given eccentricity angle, or compute the coefficients in

the minimum film thickness system and transform them using the transformations

given in Eqs. (5.22-5.24).
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The following example illustrates the importance of orientation for arbitrary pro-

file seals. Dynamic coefficients for a circular sea] (ellipticity, 6 = 0) and an elliptical

sea] (eIlipticity, 6 = 0.4), are computed using the two different approaches discussed

earlier, for concentric position. Comparison plots for direct stiffness K==, cross cou-

pled stiffness /¢_ and direct damping Cn computed using two approaches discussed

above are shown in Figures 5.19-5.21.

In these figures, Actual Coefflcienta refer to coefficients computed directly in the

fixed coordinate system (z,$t) for a given eccentricity angle. The eccentricity an-

tie is swept form 0 to 3600 and these coefficients are computed at regular intervals.

The _anaformed Coefficients are coefficients computed in a minimum _ thick-

ness system aligned with fixed coordinate system, and then transformed for a given

eccentricity angle using the transformations in Eqs (5.22-5.24).

For the _ = 0 case, i.e, for a circular seal, there is no difference between the
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two approaches. The transformed coefficients coincide with actual coefficients at all

orientations, as expected. The same procedure repeated for an elliptical sea] (6 - 0.4),

shows the differences between the two approaches. The transformed coefficients are

entirely different from actual coefficients computed in the fixed coordinate system.

Therefore,/'or seals with non-circuJar cross sections, either the coefficients are

to he computed in the fixed coordinate system at a given eccentricity angle, or if a

rnin;mnm film thickness system is used, the actual eccentricity angle should be used

to transform them into the fixed coordinate system. In other words, for these seals,

dynamic coefficients should always be referred with respect to the orientation at which

they are computed.

This the primary reason for using a fixed coordinate system for the analysis of

arbitrary profile seals, for example, the distorted seal case and the elliptical seal case.
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CHAPTER

RESULTS

In this chapter, current analysis is compared with both experimental and theo-

retical results from literature.

The following cases are studied in detail.

1. Childs and Lindsey (1993): This study presents experimental and theoretical

results for high speed, short length, smooth, liquid annular seals with an axial

taper. Experimental results are presented for both concentric and eccentric

tests. Theoretical results for concentric case are based on Childs' (1993) code

MUDY, while similar results for eccentric tests are based on San Andres' (1991)

seal code HSEAL. The friction model is Moody's and constant properties are

assumed.

2. Childs and Kim (1985): Theoretical and test results for a concentric seal based

on Hits' friction model and constant properties.

3. Scharrer and Nunez (1989): Theoretical results for a seal with a wavy (distorted)

profile in the axial direction. The friction factor is based on I'Iirs' modal and

constant properties are used.

4. Scharrer and Nelson (1990): Theoretical results for a partially tapered annular

seal. Results are for a concentric seal with Hits' friction model and constant

properties.

5. Jenssen (1970): Experimental results (sealforces) for smooth annular sealJas

a function of eccentricity."
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6. Kanki and Kawaka_ (1984): Experimental results for long pump annular seals.

Theoretical predictions of Nelson and Nguyen are included.

7. Falco et al. (1984): Experimental and theoretical results for plain annular seals.

Theoretical predictions of Nelson and Nguyen are included.

8. Allaire et al. (1976): Theoretical results based on short seal assumption and a

Blassius type friction model. Theoretical predictions of Nelson and Nguyen are

included.

9. San Andres et al. (1992): Theoretical results for a cryogenic seal with Moody's

friction model, Isothermal flow with variable properties.

10. San Andres et al. (1992): Theoretical results for a cryogenic seal with Moody's

friction model, Adiabatic flow with variable properties.

6.1 Childs and Lindsey (1993)

The results discussed in this section are based on the combined experimental and

theoretical work of Childs and Lindsey (1993). A summary of this work is presented

below.

6.1.1 Work Summary

This work presents theoretical and experimental results for water lubricated, short

length, smooth, liquid annular seals with an axial taper. Experiments are con-

ducted with five different sea] configurations at three different pressure differentials,

1.38 Mpa, 2.41 Mpa, and 3.45 Mpa. The experiments are repeated at three speeds

10200 rpm, 17400 rpm and 26400 rpm.
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Table 6.1 Seal Geometry for Childs and Lindsey

seal no. taper par. (q) c_(mm) ce(mm) c.(mm)

1, maximum divergent seal

2, slightly divergent seal

3, straight seal

4, slightly convergent seal

5, maximum convergent seal

-0.29

-0.12

0.00

0.12

0.29

0.076

0.076

0.076

0.097

0.137

0.137

0.097

0.076

0.076

0.076

0.076

0.076

0.076

0.076

0.076

In this study, the experimental results are compared with the theoretical predic-

tion of Childs' (1993) computer code MUDYfor concentric test results and with the

predictions of San Andres' (1991) seal code HSEAL for eccentric test results. San

Andres' analysis employs a finite difference based solution scheme while Childs uses

direct integration. The friction model used is Moody's and constant fluid properties

are assumed.

The taper ratio of a seal is specified by the taper parameter q which is defined

as_

and for,

q=O

q>0

q<O

c4-c_
(6.1)

q = C,:÷Ct

straight seal geometry

convergent seal geometry

divergent seal geometry

The fiveseal configurationsused in the study are identifiedby theirtaper pa-

rameter q as given in Table 6.1.
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It is assumed in this study that the pre-swirl ratio for a short annular seal is

approximately equal to its whirl-frequency ratio. This ratio for each case is determined

from the experimentally measured rotordynamic coefficients as,

WFR = k._ -
(C.. + C_)_; (6.2)

and are tabulated for all cases. This data is included in Appendix G.

The seals are classified as smooth seals and the stator and rotor relative rough-

ness is based on Moody friction model. The stator and rotor relative roughness, inlet

loss coefficient, and exit pressure recovery coefficient are selected to match theoretical

and experimental flow rates and the best set of values used in the theoretical predic-

tions for all cases are given as,

inlet loss coefficient, _ 0.1

exit pressure recovery coefficient, _, 1.0

stator rel. roughness (Moody, smooth) 0.001

rotor tel. roughness (Moody, smooth) 0.001

Experimental results are provided for concentric and eccentric seal tests. For

%

the concentric position runs, all five seal configurations are used. For the eccentric

position runs, results are provided only for the straight sea] (q = 0) and the slightly

convergent seal (q = 0.12). The experimental results include measured flow rates and

rotordynamic coefficients.

6.1.2 Comparative Study

The experimental and theoretical data included in this study present an excellent

opportunity to compare the results of the present work with the analyses of Chi]ds'

and San Andres' since one of the problems associated with studies involving combined
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experimental/theoretic_ data is a lack of consistent input data for theoretical predic-

tions and each researcher typically chooses his or her own set of input data to match

the experimental data. The objectives of this comparative study are two fold. One is

to to compare the theoretical predictions of current analysis with experimental data

and the other more important objective is to compare current analysis with Childs'

and San Andres' analyses under similar assumed input data. This comparative study

is significant in the sense that the results from the current analysis are being com-

pared to the analyses of Childs and San Andres, who use solution procedures different

from the current work, though all three analyses essentially use the same bulk flow

governing equations, friction factor and boundary conditions.

In the following comparisons, the theoretical predictions are repeated based on

the current analysis using exactly the same input parameters, i.e., same pre-swirl, inlet

loss coe_cient, exit pressure recovery coe_cient, stator and rotor relative roughness,

density and viscosity as reported by Lindsey (1993). The predictions from current

analysis are repeated for both nominal clearances and measured clearances. Measured

clearances are clearances measured under running conditions and take into account

(Lindsey, 1993) the rotor growth and change in nominal seal clearance during the

operation.

As will be evident from the comparative study to follow, the results based on

nominal clearances (NCLR) are consktently closer to the experimental data than

the results based on measured clearances (MCLR), suggesting possibly a need for

refinement of the measurement system used for measuring these clearances.

In the plots shown for this study, N refers to results based on nominal clear-

ances, and M refers to results based on measured clearances. Nominal clearances

based results are available only for current analysis. For comparisons between various

analyses, i.e, current analysis, Childs and San Andres, the results based on measured
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c]_rS_lCes are used.

In the following study, results from current analysis are provided for all cases

given below.

1. 5 sea] configurations, taper par. q: °0.29, -0.12, 0.00, 0.12, 0.29

2. 3 pressure di_erentials, Ap: 1.38 Mpa, 2.41 Mpa, 3.45 Mpa

3. 3 rotor speeds, N: 10200 rpm, 17400 rpm, 24600 rpm

4. Concentric and eccentric tests.

6.1.3 Leakage, Concentric Tests

The leakage for concentric seal operation as a function of taper parameter q is

given in Figure 6.1. As mentioned earlier, IAndsey uses Childs' code MUDY based

on Moody's friction model, for theoretical predictions of concentric seal tests. These

predictions from MUDYalong with the predictions from the current analysis for both

NCLR and MCLR are shown in this figure. As may be noted from this plot, there is

a considerable difference between predictions based on MCLR and the experimental

data. However, the leakage based on NCLR show very good agreement particularly

for the convergent seal geometry where there is almost exact correlation with the

experimental data for all speeds and pressure differentials. The maximum deviation

is about 12% and it occurs for the maximum divergent case at 3.45 pressure differential

and 24600 rpm case. This result is directly opposite to the results based on MCLR

which are closest to experimental data for the maximum divergent case. In almost

all cases, current analysis with MCLR predicts leakage which is slightly (about 10-

15/Childs' predictions. One of the possible re_ons for current analysis based on

NCLR being much closer to the convergent seals' results compared to the divergent
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seals' may be due to flow separation that is like]), to occur in divergent sea] geometries

(Scharrer and Nelson, 1990) and bulk flow model used is not equipped to deal with

that type of flow.

6.1.4 Dynamic Coef_dents, Concentric Tests

The rotordynandc coe_dents for the concentric tests are shown in Figure 6.2.

for 10200 rpm case and in Figure 6.3 for the 17400 rpm case. The correlation between

theoretical and experimental data for direct stiffness is, at best, average. However,

the present analysis results based on NCLR show a much better correlation with

experimental data than the MCLR based analysis, particularly for higher pressure

di_erentials. Both current analysis (MCLR) and Childs agree wall with the experi-

mental data for the highly convergent case. Also, the theoretical predictions generaUy

follow the trend of the experimental results, i.e., increase in sti_ness with taper param-

eter q. The maximum deviation for direct stir:hess occurs for the maximum dive_gent

case and a possible reason is flow separation as mentioned earlier.

Both MUDY and current analysis predict shnf]ar damping and cross coupled

stifr.uess. The added mass is severely under-predicted by both analyses, and Lindsey

(1993) points out that this big difference may be due to unaccounted fluid inertia

effects in the housing and piping system. In spite of the above reason, theoretical

predictions typically under-predict mass coemcients.

Similar trends are noted for the dynamic coefflcients of the 17400 rpm case ex-

cept for the damping where the dJ_erence between theoretical and experimental data

increase.
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6.1.5 Leakage, Straight Sea], Eccentric Tests

For eccentric tests, experimentai data is available on]y for two seal configurations;

a straight sea] (q = 0) and a slightly convergent sea] (9 = 0.12). The code used for

theoretical predictions for eccentric sea] analysis is HSEAL, developed by San Andres

(1991) and is based on a finite difference formulation. The plots shown in Figure 6.4

correspond to the leakage of a straight sea] operated at an eccentric position with

eccentricity ratios varying from 0 to 0.5 and for three speeds. The prediction of the

leakage rate by current anaiysis is typically 10-15_ better than HSEAL prec]Jctlons.

However, the maximum _erence between test data and current anaiysis based on

NCLR is ouly about 10%.

The large deviations predicted by HSEAL are inexplicable and

6.1.6 Dynamic Coefficients, Straight Sea], Eccentric Tests

The plots in Figure 6.5 refer to the dynamic coefficients for the straight seal op-

erated at various eccentricities. PrecUctions by both the current analysis and HSEAL

are similar and follow the trends of the experimental data. Good comparison for

direct damping and cross coupled sti_'Eness for both analyses.

Sim_ar trends are seen for the 17400 rpm case.

6.1.7 Leakage, Slightly Convergent Sea], Eccentric

The results in this section correspond to the leakage of the slightly convergent sea]

(q -- 0.12). As noted earlier, there is excellent correlation between current analysis

(NCLR) and measured _ow rates for the convergent geometry seais (Figure 6.1).

This very good correlation is repeated for the case of aLightly convergent seal shown

in Figure 6.7. Best comparison of _ow rates for all sea] com_gurations tested. These
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results based on nominal clearances point to the fact that possibly the measurement

system employed to measure clearances during operation need to be refined.

There is considerable difference of more than 20% in leakage predictions between

current analysis (MCLR) and San Andrea' results, particularly for 17400 rpm and

24600 rpm cases.

6.1.8 Dynamic Coef_cients, Convergent Seal, Eccentric Tests

The plots in Figure 6.8 and Figure 6.9 correspond to the dynamic coef_cients for the

slightly convergent seal configuration at 10200 rpm and 17400 rpm respectively. Ex-

celient comparison of flow rates (NCL) translate into better correlation with dynamic

coe_icients, particularly for direct stiffness. For current analysis based on MCLR

and San Andres report slmiIa_ dynamic coe_Bcients, with a slight variation in direct

stiffness for the higher pressure differential case.

6.1.9 Conclusions

Lindsey makes the following conclusions based on the above study.

1. In general, results are consistent with theoretical predictions, except for flow

rates.

2. Theory largely under predicts _qow rates.

3. Flow rates comparison best for maximum divergent case

4. Direct St_mess increases with taper parameter q.

5. Cross coupled stiffness predicted we]] by theory.

6. Damping decreases for q < 0 and q > 0.
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7. Damping increaseswith eccentricityratio.

8. For eccentric seals, the dynamic coe_cients remain relatively constant upto an

eccentricityratio of 0.5.

Current analysispredictionsbased on nominal clearances forflow ratesare much

closerto measured i]ow rates than measured clearances based analyses. For conver-

gent sealgeometry, the flow rates almost match exactly. When measure clearances

are used, current analysis shows a slightlybetter agreement (10-15%) than either

MUDY or HSEAL. Comparison of allanalyses in the case of directstillnessis,at

best,average. Current analysisbased on NCLR gives a better correlationthan the

other analyses based on MCLR.

6.2 Childs and Kim (1985), I-liraModel

Childs and Kim [1985]presented an analyticaland experimental study for rotordy-

namic coefficientsof turbulent annular sealswith differentdirectional]y-homogeneous

surface roughness treatments for rotor and stator surfaces. The frictionmodel is

based on Hits' model and constant propertiesare assumed and the analysisisfor a

concentricseal.The sealcode based on the the analyticalpart of thisstudy had been

the mainstay of sealanalysiswork at NASA/MSFC for many years. MSFC provided

thisauthor with data for some testcases which were then compared with the results

from the present analysisfor Hits'frictionmodel. Results from one of the testcases

isgiven in Table 6.2.The sealdata for thisexample isgiven in Appendix G.

The resultsfrom current analysis for Hits' frictionmodel match well with the

resultsof Childs and Kim (1985).
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Table 6.2 Childs and Kim Check Case, Hits' Model

Data

K,= 88.14 MN/m

11.11_/m

C=, 16.15 kN-slm

c,q, 0.419 ]cN-s/m

M, 0.3215 kg

m R -0.0024 kg

Q 7.959 kg/s

G_ilds/Kirn Cu_r_nt Analysis

88.14 MN/m

11.11 MN/m

16.14 kN-s/m

0.419 kN-s/m

0.3214 kg

0.0005 kg

7.959 kg/s

6.3 Scharrer and Nunez (1989)

The effectof seal distortionson rotordynamic coe_cients was firstconsidered by

Shatter and Nunez (1989). They reported that a 2-D, axisymmetric, fudte element

analysiswhich considered the internalpressure distribution,and the boundary condi-

tions due to assembly and operating interferencesproduced a clearanceprofilewhich

was wavy and different_om the nominal design tapered profile.

This distortedsealprofilein the axialdirectionwas fittedwith a clearancefunc-

tion in the form of a polynomial as,

h(z) = al + a_z + asz2 + a4xs + a6z4 (0.3)

where the coeitldents al, a2, ..- etc., are coeitlcients chosen to fit the distorted axial

profile.

They adapted the analysis of a plain seal to the case of a wavy profile seal. They
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Table 6.3 Scharrer and Nunez, Rough Wavy Seal Case

Data

Ku 46.35 MN/m

52.02

C,,,, 33.42 kN-s/m

c_ 1.49 kN-s/m

M,,,_ 0.753 kg

m,._ 0.026 kg

Q 0.471 kg/s

Scharrer/Nunez Gurrent Analysia

57.30 SN/m

51.57 SN/m

33.65 kN-s/m

1.43 kN-s/m

0.772 kg

0.015 kg

0.462 kg/s

reported a marked change in the computed rotordy'namic coefticients due to a change

in the seal pro_e. These changes include, a) loss in direct stiFmess b) increase in

cross coupled stiffness c) increase in damping. The results for the case of rough wavy

sea]is given in Table 6.3. The directstiffnessbetween two analyses di_er by about

20%.

6.4 Scharrer and Nelson (1990)

Scharrer and Nelson (1990) conducted a theoreticalstudy of an annular sealwith a

partially tapered clearance. In this study, they investigated the axial distortion prob-

lem. They tried to correct the predicted distortions by machining out the undesirable

distortions at the design stage itself. The mode] they used to accomplish this is a

sea] with a taper on part of length of the seal. Using this model, they conducted a

parametric study of various performance characteristics as a function of taper length

to total length ratio (T/L). Based on this study they recommended optimum ratio
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of T/L for best performance of these partially tapered seals from a rotordynamJc

analysis point of view.

They developed the analysis based on Hits' turbulent lubrication equations (Hits'

friction model). In this analysis, the seal is assumed to have a taper only over a portion

of the length of the seal and the rest of the seal is treated as a straight seal.

Figure 6.7 shows the details of a partially tapered seal. L is the total length

and T is the taper length and c_ and c_ are inlet and exit clearances. The taper

length/total length ratio is varied by varying the parameter, q given as,

q = T/L (6.4)

The seal is a completely straight seal for q - 0 i.e., c_ = c_ and a fully tapered seal for
e

q = 1.0. This ratio is varied from 0 to 1 and its effect on leakage and rotordynamic

coeitldents is studied.

They analyzed two di_erent seal configurations based on stator and rotor relative

rougtmess.

1. Taper Smooth (varying q)

2. Taper Rough (varying q)
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Table 6.4 Scharrer and Nelson, Partially Tapered Seals (Smooth), Taper=l.0

Data

K.,,

G_

M,,,

Schar'rer/Nelson Current Analysis

242.0 MN/m

65.5 MN/m

26.0 kN-s/m

0.66 kg

215.0 M_/m

62.6 N[N/m

24.8 kN-s/m

0.66 kg

For both the above eases, the inlet clearance to exit clearance ratio _' is main-
@e

talned at 3. A portion of results from that study along with current analysis results

are presented in Tables 6.4-6.9.

6.4.1 Smooth Seals

For the case of smooth seals, results are compared for three taper ratios;

I. taper ratio, q = 1, a fully tapered seal.

2. taper ratio,q = 0.4,a partiallytapered seal.

3. taper ratio,q = 0.0,a fullystraightseal.

•Results given in Tables 6.4--6.6show about 20% differencein K_, and slightly

smaller deviations for k_, for allcases.

6.4.2 Rough Seals

Similar results are reproduced for the case of rough seal for three di_qerent taper

ratios.The resultsare shown in Tables 6.7-6.9.Again, as in the case of smooth seals,
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Table 6.5 Scharrer and Nelsoa, Partially Tapered Seals (Smooth), Taper=0.4

Data

g== 220.0 MN/m

/=_ 82.0 MN/m

C== 32.0 kN-s/m

M== 0.55kg

Scharn,'er/Ndson Current Analysis

179.7 MN/m

75.26 MN/m

29.45 kN-s/m

0.55 kg

Table 6.6 Scharrer and Nelson, Partially Tapered Seals (Smooth), Taper=O.O

Data

K== 152.0 MN/m

102.5 MN/m

C== 39.2 kN-s/m

M=. 1.02 kg

Scharrcr/Nelson Current Analysis

159.0 MN/m

105.2 MN/m

40.1 kN-s/m

1.02 kg
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Table 6.7 Scharrer and Nelson, Partially Tapered Sealz (Rough), Taper=l.0

Data Scharrer/Ndson

K_. 222.0 M_/m

61.oMN/m

Cee- 25.8 kN-s/m

M.. 0.66 kg

Current Analysis

194.0 MN/m

57.9 MN/m

24.3 k.N-s/m

0.66 kg

there is di_erence of about 20% in direct stillness. Both analyses use same governing

equations with Hits' friction model.

To explain this discrepancy, the results from this study are compared to Childs

and Kim (1985) as all three analyses use the same governing equations based on

Hits' friction model and differing only in the solution procedure adopted. The results

of this comparison are shown in Tables 6.10--6.11. These results show Scharrer and

Nelson's analysis differs from Childs' and current analysis consistently. It is likely

that Scharrer was using the same analysis that he and Nunez (1989) used for the

wavy profile seal analysis where a similar discrepancy was also noted. The sea] data

for thisstudy isincluded in Appendix G.

6.5 Jeassen (1970)

Jenssen (1970) investigatedexperimentally the load bearing capacity of smooth liquid

annular sealsat various eccentricities.The test data was collectedfor three pressure

differentials,0.344 Mpa, 1.034 Mpa, 1.724 Mpa and at three differentspeeds 3000 rpm,

5000 rpm and 7000 rpm. The seals"used in the experiment are long seals(L/D-1.025)

with water as the working fluid. He also presents theoreticalpredictions based on
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Table 6.8 Schazrer and NeLson, Partially Tapered Seals (Rough), Taper=0.4

Data Schaefer/Nelson

K.= 190.0 MN/m

68.0MN/,,,

Cn 29.0 kN-s/m

21//== 0.67 kg

Curr_nt Analysis

170.2 MN/m

70.0 MN/m

29.0 kN-s/m

0.59 kg

Table 6.9 Sehva-rer and Nelson, Partially Tapered Seals (Rough), Taper=0.0

Data

Ku 118.0 MN/m

_., 87.5MN/,.

C',,. 38.2 kN-s/m

M,.. 1.08 kg

Scharr_r/Ndson Current Analysis

121.0 MN/m

89.3 MN/m

38.6 kN-s/m

1.09 kg
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Table 6.10 Schm-rer and Nelson, Comparison with Ctfi]ds and Kim, Taper=l.O, Rough

Data

i_Izz

ro_m_

Q

Scharr_r/Net,on

242.0 MN/m

65.52 MN/m

26.0 kN-s/m

0.66 kg

G'_hilds/Kim Current Analysis

215.7 MNIm

62.74 MN/m

24.8 kN-s/m

3.16 kN-slm

0.66 kg

0.0027 kg

9.568 kg/s

214.8 MN/m

62.69 MN/m

24.8 k.N-s/m

3.16 kN-s/m

0.66 kg

-0.0041 kg

9.551 kg/s

Table 6.11 Scharrer and Nelson, Comparison with Childs and Kim, Taper=l.0, Rough

Data

K== 222.0 M!N/m

61.o

Cu 25.80 kN-s/m

c_

M,,. 0.66 kg

Wlry

Q

Scham'er/Nelson G"hild_/Kim Curr_nt Analysi_

194.6 MN/m

58.1 MN/m

24.36 kN-s/m

193.8 M]N/m

57.9 MN/m

24.30 kN-s/m

2.72 kN-s/m

0.66 kg

-0.0042 kg

8.356 kg/s

2.72 kN-slm

0.66 kg

-0.0074 kg

8.346 kg/s
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shor_ seal assumption which are not shown here. The sea] input data for this case is

taken _om Nguyen (1988) and is given in the AppendJ.x G. Results from the current

analysis along with the experimental data are given Figures 6.11--6.13, for the three

rotor speeds.

The steady state sea] forces are plotted as a function of eccentricity ratio and

the precUctions from the current analysis agree weU with the experimental data for

atI pressure difl'erentiaIs and at all speeds.

6.6 KankJ and Kawakami (1984)

KankJ and Kawakami (1984) investigated the dynamic bearing effects of long pump

annular seals as a function of eccentridty. Nguyen (1988), reported convergence

problems at eccentridty ratios of above 0.4 with the orig_a] method as shown in the
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plots Figures 6.14-6.18. Beyond 0.4 eccentricity ratio, Ngnyen's method has problems

converging and he attributes this convergence problem to to the onset of laminar flow

and inability of the analysis to deal with negative direct stilrness. However, with'the

current analysis such a problem is not encountered. The test seal is a long smooth

seal (L/D=1.0) and the working fluid is water.

The results for this case along with Ngnyen's results are shown in Figures 6.14-

6.18. It is true that the solution procedure has problems dealhg with negative direct

stilrness. However, this condition is rarely encountered in practical sea] design and

thus need not of major concern as far as the ei_cacy of this analysis is concerned.

Figure 6.14 shows the steady state sea] force as a function of eccentricity. Nguyen

(1988) results ate ouly upto 0.4 due to numerical problems while the current analysis

gives reasonably good results upto 0.65.

Nguyen's analysis predicts direct stillness K w to decrease with eccentricity as

shown in Figure 6.15. Current analysis predicts this direct sti_ess in line with the

test data, i.e., increase with eccentricity for Kw and decrease with eccentricity for K,=.

Also, Nguyen's analysis runs into convergence problems around 0.4 eccentricity ratio.

Current analysis encounters no such problems. There is reasonably good comparison

for cross coupled stillness, k,_, _, between current analysis and test data.

The main feature of the results presented in this case is the better convergence

properties of the current analysis based on cubic spIines compared to the original

approach of Nelson and Ngnyen based on Fast Fourier Tranaforms (FFT). Also, the

results from current analysis agree with experimental data better than Nelson and

Ng_yen's analysis.
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6.7 Falco et a/. (1984)

In ttds combined experimental and theoretical work, Falco eta/. investigated the

effect of eccentricity on the dynamic coefficients of an annular seal. Their analytical

work was based on a finite element model and they compared the analytical results

with experimental test data. They compared their theoretical predictions with the

various methods in use at that time and concluded that their finite element based

analysis provided the best comparison with experiments] data. Subsequently, Nguyen

(1988) showed that the predictions from his analysis were in better agreement than

Falco's theoretical results. In plots shown in Figures 6.22-6.26, Falco's experimental

results along with Nguyen's predictions and current analysis res-_Its are given. The

input data used is from Nguyen (1988) and is given in Appendix G. The results show

good comparison with the origins] Nguyen's approach.
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6.8 Allatre et a/. (1976)

In this work, AJJaire eta/. investigated the effects of large eccentricity on the dy-

namic coe_cients of interstage sea] of Space Shuttle Main Engine High Pressure Fuel

Turbopump (SSME-HPFTP). They used a so]ution approach using the short seal

assumption (Couette flow) and a Blassius-type turbulent friction factor model. The

results from current analysis along with Nelson and Nguyen predictions are given in

Figures (6.19--6.21). The seal input data is taken from Nguyen (1988) and is included

in the Appendix G.

6.9 Comparison of Variable Properties Model with Constant Properties Model

Results from a distorted seal analysis have been discussed in Chapter V. This exercise

is repeated for the variable properties model developed in Chapter III. Comparisons
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made between the two models are shown in Figures 6.22--6.27.

The main difference between these two models is a reduction in direct stiKness for

the variable properties case and it difference with eccentricity as shown in Figure 6.22.

This may be explained by the inclusion of compressibility into the analysis, in effect

making the spring softer. There is negligible difference in other coeffldents.

Leakage, shown in Figure 6.27, is expected]y smaller for the variable properties

model due to a decrease in density.

6.10 San Andres el a/. (1992), Isothermal Case

San Andres et _/. (1992) presented theoretical results for a straight seal with thermal

effects and variable fluid properties. Two cases are considered.

1. Isothermal flow
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2. Adiabatic flow

The case of isothermal flow (constant temperature) is the same as the variable

properties model discussed in Chapter HI, i.e., fluid properties are assumed to be a

function of local pressure and a mean temperature. The results for the isothermal

case from current work are compared with San Andres' in Figures 6.28--6.33. Direct

stiffness, shown in Figure 6.28, differs by about 20% and this difference is maintained

at all eccentricities. Agreement for cross coupled sti_ess, in Figure 6.29, is slightly

better.

6.11 San Andres et a2. (1992), Adiabatic Case

The same case considered in the previous example is repeated with the thermal effects

model of Chapter IV. The results are shown in Figures (6.34--6.38). are for the

adiabatic case (Q, = 0, no heat transfer). The results are for concentric case and do

not include perturbations in temperature as explained in Chapter IV.

The temperature rise across the seal is shown in Figure 6.34. San Andres points

out that if this rise in temperature is big enough, the fluid may enter a two-phase

region seriously affecting the performance of the turbomachine.

The frictional torque and flow rates shown in Figures 6.35,6.36 roughly match.
o

However, cross coupled stiff.uess, shown in Figure 6.37 is off by about 25%. Damping,

both On and c._ agree well.

6.12 Comparison of Current Analysis with Other Methods

The following general conclusions may be drawn based on the check cases discussed.

Comparison with Nelson and Nguyen:

Expected]y, all check cases with current analysis compare well with their theoretical
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predictions. In some comparisons with the experimental data, the comparison with

current analysis is better than their results. For check cases where their method had

convergence problems and failed, current analysis gives good results.

Comparison with Ch;Ids:

The current analysis compares very well with Childs' I-firs' friction mode] based anal-

ysis (1985). For this friction model, current analysis matches Childs' analysis almost

exact]),. S_m_]_ comparison exists between curren analysis and his more recent work

based on Moody's mode].

Compar_on wit]_ Sc3arrer and Nelson:

There is some deviation between their analysis based on Hirs' friction mode] and the

current analysis. A three-way comparative study between Chflds' analysis, Schar-

rer and Nelson' work and the current analysis shows discrepancy in their results.

While Cldlds and current analysis agree well consistently, their results for stillness
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coemcients are off by about 20%.

Comparison witl_ San An_es:

There is some deviation between the current analysis and San Andres' Moody friction

factor based eccentric analysis, both for constant properties and variable properties

cases, particularly for stiffness coefScients. It appears as though these deviations vary

from case to case. For example, for Childs and Lindsey (1993) experimental results,

the di_erence in flow rates for convergent seals is considerably large. Same for direct

stiffness at high pressure differentials. However, for other cases the _erences are not

of that order. It is di_cult to speculate on the reasons for these deviations as both

analyses use entire.]y di_erent solution procedures.

However, for the current analysis an equivalence will be established between the

dynamic coe_cients based transient motion and the same motion based on original

governing equations. For the second approach there is no first order solution involved.

If these two approaches match consistent]y, it establishes, in the minumum, that the

is no error in the linearized coefficients obtained from the dynamic analysis.
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CHAPTER VII

TBANSIENT ANALYSIS

In simulating the dynamics of a rotor system with fluid bearings such as journal,

tilt-pad bearings etc., or an annular seal in the present study, the dynamic effects

of seals for a _na_ motion of the rotor about an equilibrium position are usually

modeled using a linearized/orce-motion model similar to the one shown in Eq. (7.1).

In this equation, (6z,6y) are the displacements, (6_, 63) are the velocities and

(6g, 6_) are the accelerations in the X and Y directions respectively, relative to a

static operating point (z, $/). The fluid force terms AFj and AF_ are the incremental

or perturbed fluid forces for a small motion of the rotor sha_ about (z,p). These

force components, in general, vary as a function of rotor displacement, translational

velocity and acceleration and are linear on]), for small orbital motion.

In this model, K., K_, _, ]_ are the linearized stiffness coe_cients, C_, Cw,

c_, c_ are the linearized damping coefRcients and Mu, M_, m._, _ are the lin-

earized added mass or inertia coetBcients at the static operating point or eccentricity

+ (7.1)

In the lineaz_ed model, the terms [KnSz] and [K_vSp] account for the incremen-

tal fluid reaction forces of the seal due to a small displacement of the rotor (6z, 6y).

The term [/_6!/] is the cross coupled force in the X direction due to a displacement 6Z/
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in the Y direction. Shn[larly, [/_6z] is the cross coupled force in the Y direction due

to a displacement _z in the X direction. The terms [C'=6_] and [C'_6_] represent

the incremental damping forces due to a small velocity change (6_, 61_). Similarly,

[M,=6_] and [M_6_] are the incremental fluid inertia forces due to a small change in

acceleration (6_, 6_). For a concentric seal, Kn = K_,/_ =/_ etc., reducing the

number of coefficients from twelve to six. Typically, for an annular seal, the important

coe_cients are direct stiffness, cross coupled stiffness, direct damping and direct or

added mass. The contributions of other terms axe negligible in most cases compared

to these terms.

These twelve linearized coe_cients are, in general, nonlinear functions of the

static operating point (z, y). The variations of direct stiffness Ks=, direct damping

C_ and cross coupled stLFzness/_ for various rotor operating positions for seal unit 3-

02, an experimental sea] under design at NASA/MSFC, are shown in Figures 7.2-7.4.

These curves are obtained by the dividing the circumference of the sea] into a number

of segments as shown in Figure 7.1 and computing the coe_cients as a function of

eccentricity along each of the radii. For this sea], the coe_cients remain constant

upto an eccentricity ratio of 0.4. Beyond this limit, the coel]icients start varying and

t_s variation becomes much more pronounced as the eccentricity ratio exceeds 0.6.

These curves are typical of a tapered seal and similar curves can be obtained for a

straight seal.

In practice, usually a single set of dynamic coefilcients computed at centered

position is used to model the dynamic behavior of the seal i.e., to compute seal

forces in rotordynamic simuJations. This is based on the experimental and theoretical

observations (Ckilds 1993) that generally there is little change in dynamic coe_cients

upto an eccentricity ratio of 0.4-0.5. In other words, for simulations involving motion

with in this range the dynamic coettlcients computed at zero eccentricity shouJd be
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Figure 7.1 Circumferential Grid for Seal Coefficient Mapping

adequate to model the seal behavior. For example, at NASA/MSFC for the SSME

turbopump simulations, dynamic coefficients used to model the interstage sea] are

computed at zero eccentricity.

It is assumed that this set of coefficients computed for a concentric seal would

reliably predict the dynamic behavior of the seal over its entire range of operation,

which may include motion with large eccentricities. This fact of large eccentric motion

has been confirmed by the presence of destructive rubs in the SSME tttrbopump

interstage seals.

This method of modeling a seal using a tingle set of coefficients is valid only if

the dynamic coefficients remain invariant in the clearance space. For example, for

the seal unit 3-02 (Figs. 7.2-7.4) the coefficients remain relatively constant as long as

the operating point fails within a circle of radius of about 0.4 eccentricity ratio. As

this limit is exceeded, the coefficients start varying and the variations are more rapid
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at higher eccentricities.

In general, the above seal model (Eq. 7.1) consisting of 12 coefficients accurately

approximates the dynamic behavior of the sea] subject to a few limitations given

below.

1. The model is valid only for a 8ma/l motion in the immediate neighborhood of

the static operating point at which the set of dynamic coefficients are computed,

typical]), upto 0.4 eccentricity ratio. This is the basic assumption on which the

linenrized coefficients of the model are derived.

2. The dynamic coefficients derived at a given static operating position may not

be accurate when used at a different operating point.

3. Even though these dynamic coefficients can be computed at various eccentrici-

ties, in general it is not possible to decide which set of coefficients to use when

the rotor is moving around in the clearance space such as in a transient motion.

7.1 Objectives

The main objective of this work is to study the effect of large rotor displacements

of $SMF-,-ATD-HPOTP turbopump on the dynamics of the annular seal and the

resulting transient motion.

For the purpose of this study, large eccentric motion is classified into two types

as illustrated in Figures 7.5-7.6. Figure 7.5 shows the time-displacement curve for

the center of a rotor executing a steady state motion with a large amplitude. The

amplitude is of the order of radial clearance (in this case about 0.017 nun) and hence

may be considered as a motion with large displacement.

The motion represented in Figure 7.6 is of the second type where the rotor is
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displaced to a large static eccentric position (e > 0.4) while executing motion similar

to type 1. The following study is not limited to these two types of motion and these

are used only for the purpose of illustration. The analysis to be developed is valid for

any type of genera] motion.

Results from the investigation of the first case should help in establishing the

limits of accuracy of the linear force-motion mode] at a given static operating point.

The basic underlying assumption of this mode] is that it is valid only for a small

motion, typicaUy for e > 0.4, about the operating point. The exact lhnJts of this

small motion are undefined. The study of second case is more important in the sense

that the study focuses on deviations between the predictions usin 8 a single set of

coef_cients and the actual buik flow model motion as the rotor moves through the

clearance space in an arbitrary fashion.

For the purpose of this study, the mode] of sea] represented by a single set of

coefEcients will be identh'ied as linear model (e - 0). This mode], while valid for a

sma]l motion about the centered position, may not be accurate for hrge off-center

operation of the sea]. This off-center motion includes both types of motion described

earlier. One of the objectives of this study is to identify the magnitude of these

deviations and examine the effect of these deviations on the overall stability of the

rotor system and establish limits of effectiveness of using such a mode]. This task

is accomplished by solving the bulk flow modal seal governing equations directly for

transient sea] forces for any given type of motion, including motion involving large

eccentricities. Results from this study confirm considerable differences, for large off-

center operation, between the approximate linear rnodd (e = 0) and the actua] bt,_

flow mode/.

This approach of solving the governing equations directly for transient seal forces,

while being the most accurate, may not be practical to be included in a rotordyaamic
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simulation code, mainly due to the large computing resources requbed to solve these

equations at each time step. As a matter of fact, this is the primary reason for using

approximate models such as the one shown in Eq. (7.1) in rotordynamic simulation

codes. As an alternative, a general method is developed to mode] non-linearities

in an annular sea] based on dynamic coefficients computed at various static rotor

operating positions in the seal clearance space. This method takes into consideration

the time history of transient motion, i.e., displacement, velocity and _cceleration

pro_es to compute the transient sea] forces at any given instant of time. This method

is extended for approximate displacement, velocity and acceleration profiles to yield

a practical method that is accurate and easy to implement in a rotordynamic analysis

code.

Results from these two methods compare well with those of the actual bulk flow

model for large eccentric motion. These methods, thoroughly tested for various types

of transient motion, provide an efficient and practical means for accurate simulation

of the dynamic effects of an annular sea] for any type of motion.

The following tasks are accomplished in this study.

1. Study the effect of large eccentric motion of the rotor on the dynamic behavior

of a SSME-ATD-HPOTP annular seal using the bulk flow model seal governing

equations.

2. Compare the results of the above study with those of the model currently in

use at NASA/MSFC i.e., linear model (e = 0).

3. Develop a method that accurately simulates the dynamics of an annular seal

for large eccentric motion of the rotor.

4. Thoroughly test the method for various types of transient motion using bulk
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flow model results as benchmark.

5. Compare the results of various models and note their their relative merits and

ddidendes.
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CHAPTER VIII

VARIOUS SEAL MODELS FOR TRANSIENT ANALYSIS

In thischapter, the differentmodels used to study the transientanalysiswith an

annular sealare discussed.These various models differin the way they compute the

sealreaction forcesfor any specifiedmotion of the rotor. The four differentmodels

used in thisstudy are explained below.

1. Bulk Flow Model: This model uses a solution procedure based on the actual

set of seal governing equations (Eqs. (2.1-2.3)) to compute for transient fluid

forces at each time step based on a specified motion of the center of the rotor.

The results of test cases with this model are used as a benchmark to compare

the other approximate models.

2. Linear Model (e= 0): This model isbased on the linearforce-motion model of

Eq. (7.1)and uses dynamic coefficientscomputed at zeroeccentricityto compute

the fluidforces. This is the model currently being used at NASA/MSFC for

SSME turbopump rotordynamic simulations.

3. New Method-I: This model is based on a new method developed to compute the

transient seal forces in a computationally efficient manner. This method makes

use of time history of displacement, velocity and acceleration of the rotor to

compute the seal forces.

4. New Method-H: This is a simplified extension of method-1 and it assumes

approximate displacement, velocity and acceleration profiles to compute seal

forces.

These various models are shown in flow chart in Figure 8.1.
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In the following sections, each of the above models is discussed in more detail.

8.1 Transient Analysis with Bulk Flow Model

The linear force-motion model of seal shown in Eq. (7.1) approximates the behavior of

the bulk flow model governing equations for a small motion of the rotor at the static

operating point (z,y). The coefficients in this model are obtained by perturbing the

bulk flow model governing equations given in Eqs (2.1-2.3) at (z,y) and fitting the

perturbed fluid forces to the linear model. While the linear model is valid only in the

neighborhood of (z,y), the governing equations are valid at any point in the clearance

space. To study the deviations between the linear model at a given operating point

and the actual bulk flow model, this set of governing equations are salved for the

transient fluid forces directly. The Eqs. (2.1-2.3) are reproduced here for discussion.

Continuity:

O(hu) 1 O(hv ) Oh
a-S- + R a_ + _ = o (8.1)

Azial Momentum:

h_
p az

Ou v Ou Ou

U U

+ A5v_ + ,,_ + f,._v/u_+ (,, - _)_

Circumferential Momentum:

(s.2)

h Op = h{_- + vav

-- I11)

+ f._v_+,,,+ 1,6' 2 _/,,, + (,_- w), (8.3)

The film thickness in the global coordinate system is given by (Eq. (2.29)) as,

h(z,B,t) = ¢(R + c)' - (zsinl_ - yeost3)' - (zeos/3 + ysirtB) - R (8.4)
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and its derivatives with respect to axial and circumferential coordinates are given by,

Oh

oh (R+c)_,
o-'7 = 9,(R+ c)"- (z,i,_- u_o,_)' (8.s)

(R + c) °'b_- (zsin_3 - Itcos_3)(zeoa_3 + ltsin13)

0"_ = ((R + c)' - (zain_ - ueo, B)' (8.6)

Oh _ -(zsinB- TlcosB)(_aint3 - fteosB) _ (kco,13 + ilsinB) (8.7)
ot - v/(n + c), - (_,i,,_ - uco,_),

The time derivatives _st, _'ot and _ are approximated using a backward difference

formula.

o_ (_(t_) -_(t,))
& (t, -t_)

Ov (v(t,)-v(ta))

Ot (t2 - ta)

Op ,_ (p(t,) - PCta))

Ot (t, - t,)

(8.8)

(8.9)

(8.1o)

The displacement (z, y) is the displacement of the center of the rotor and (k, _)

is the velocity of the center of rotor and (_, _) is the acceleration of the center of the

rotor.

8.1.1 Transient Seal Forces with Bulk Flow Equations

The solution procedure to solve the above set of partial differential equations

is similar to the procedure discussed in Chapter H. At each time step, Eqs. (8.1-

8.3) are solved to subject to the the boundary conditions given in Eqs. (XX-X.X).

The variables u(z,3,t), v(z,13,t) mad p(z,3,t) are the time varying velocities and

pressure. At each time step, the pressure distribution p(z,_,t) is integrated along

the length of the seal to compute the two components of the fluid force Flz.__ z and
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-F,,=,.(,)ff'"
-- ,_o .to p(z,_,t) cosl_ R d_dz (8.11)

- F#i,_i_i(t) : L L io" p(z,n,t) .inJ R d_d: (8.12)

The computation of these transient fluid forces is _ed out in a continuous

fashion from one time step to the next, with the current values of the variables acting

as initial values for the next time step. Numerical integration with respect to time t

is implemented using a fourth order Runge-Kutta integrator with adaptive step size.

The following time step is used for the transient analysis.

t,,

At = (8.13)

where t,, is the time period of the system.

8.2 Transient Analysis with Linear Model (e = 0)

This is the model usually used to model the dynamic behavior of an annular seal

(Eq. (7.1)). The dynamic coeffidents used in the model refer to those computed at

the steady state operating position of the rotor. While these linea_ed coeffidents

can be computed at various eccentridties, it is not possible to decide which set to use

when the rotor is moving in the clearance space in an arbitrary fashion such as in a

transient motion. In practice, the set of coefficients computed at zero eccentricity are

used in the model to compute the seal forces. For example, at NASA/MSFC, SSME

turbopump simuIatious use this model

8.3 New Method-I

In this section, a general method is developed to simulate the dynamic behavior of

an annular sea] using dynamic coefficients computed at various static eccentricities
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in the clearance space. The motivation for this endeavor is two fold.

• Firstly, there exists a need for a more accurate mode] to simulate the dynamic

behavior of the seal for motion with e > 0.4 as predicted by the bulk flow mode]

compared to linear model (e - 0). Large computing resources required to solve

the set of governing equations, Eqs. (8.1-8.3), make bulk flow mode] approach

impractical for routine rotordynamic simulations.

• Secondly, it requires a lot less effort to compute dynamic coef_dents for a given

sea] unit and for a given set of operating conditions and the methodology for

this process is we]] established.

Consider a single degree of freedom 8p_ng-m_s.,tamper system show_ in Fig-

ure 8.2. It is assumed that the stL_ness (K), damping (C) and mass (M) va-'7 only with

displacement z and are independent of ve]ocity and acce]eration. This assumption

follows from the case of an annular sea] where the dynamic coe/_cients are essentially

functions of eccentricity alone. Various restoring forces in the components of this

system are considered Be]ow.

8.3.1 Stiffness Force

The incremental restoring stLf_ness force Ark in the spring due to an in__'mitesimal

extension 6z from z is given by,

where K is the spring stiffness.

A/_ = -K(z)6z (8.14)
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K(x)

F

/////

Figure 8.2 SDOF Spring-Mass-Damper System

8.3.2 Damping Force

The increments] restoring damping force Arc in a damper due to an imemitesims]

change in vdodty 6_ is given by,

AA

where C is the damping coeflident.

= -c(_)6_ (8.15)

8.3.3 Inertia Force

Similarly, the increments] inertia restoring force Af., due to an infmiteslms] change

in accderation 6_ is given by,

z_f. = -M(z)_

where M is the inertia or mass coeflldent.

(s.16)
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+

Figure 8.3 Seal Modal for a 2 DOF Vibration Model

8.3.4 Theory

Consider the 2-DOF model of the se.al in Figure 8.3 as represented by the 12 dynamic

coefficients of the linear force-motion modal of Eq. (7.1). at an eccentric position

(z,I/). It is assumed that the stiffness, damping and inertia coefficients of this seal

model are known at any static eccentricity (z, 1/) in the seal clearance space.

Let Ku(z, y), k_(z, y),/¢_(z, F) and K_(z,y) be the stiffcness coefficients, Cu(z, II),

c._(z,11), c_(z,y), C_(z,F) are the damping coefficients and M=(z,ll), ,n_(z,v),

"h_(z,y), M_(z, ll) are the inertia coefficients at eccentricity (z,y).

An implicit assumption is made regarding the dependence of dynamic coefficients

essentially on displacement and they are assumed to be almost independent of ve-

locity and acceleration. This assumption will be verified in the following sections in

comparison with original bulk flow governing equations.
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The eccentricities or displacements of the center of rotor (z,y) are functions

of time t and may be specified as (z(t),v(t)). Let F,(t,) and F_(t_) be the X and

Y components of the fluid reaction force at any given time ti. These two force

components may be considered as a summation of 12 individual component forces

due to the 12 dynamic coefficients of Eq. (7.1), as given below.

-F.(t,)= f,=.Ct,)+ f_(t,)+ f==(_,)+ f._(t,)+ f_.(t,)+ f=._(t,)

-F_(t,) = fk_,(t,) + f_(t,) + f_(t,) + f,w(t,) + f=t_(t,) + f,_w(t,) (8.17)

Let at t_.l = ti + At, the incremental fluid force components in X and Y directions

be AF,,(t,) and AF_(t,) respectively.

F.(t, + at) = F.Ct,)+ AF.(t,)

F_Ct,+ at) = F_(t,)+ aFt(t,) (8.18)

and the individual components of aF.(ti) and AFy(ti) are given below based on the

linear-force motion modal of Eq. (7.1)

af,=f(t,)+ af,_Ct,)+ a/=.Ct,)+ Af.._(t,)+ af_.(t,)+/V_,(t,)

a f_.(t,) + a f_Ct,) + Af._.Ct,)+ a f_Ct,) + Af=_.Ct,) + a f_,(t,)

(8.19)

The infinitesimal change in displacement (Sz_, 6V,) is given by,

6_, = _(t, + at)- _(t,)

_, -- v(t, + at) - v(t,) (8.20)
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The infinitesimal change in velocity (6_i, 6p_) is given by,

6_, = _(t,+ _t)- _(t_)

Similarly, the infinitesimal change in acceleration (_i, 6_) is _ven by,

(s.21)

&l'e_

a.,,",,=,,(,_,)= x.,,,C_(t,),v(,_,))6_, (8.23)

a.t'_(t_) = _(_(t,),vCt,))6_, (8.24)

A.,"_(t4 = x,,,,C_(t,),vCt,)),_, (8.:_8)

a.f,=..(,_4= c..,(_(_:,),v(t,)),_, (8.2r)

Af.._Ct,) = _(_(t,),_(t,))6,i, (8.28)

Af_Ct,) = _(_(t,),_Ct,))_, (8.29)

Ay,(t,) = c,,(_(t,),_(t,))_, (8.30)

_ f,,_(t,) = M.C_,(t,),_,Ct,))a_, (8.S_)

_f.,.,,(t,) = ,',',.,,(_(t,),_,(t,))a,2, (8.82)

_f.,.(t,) = ,,_(_(t,),_,(t,))a_, (8.ss)

Af,,,_v(t,)= M_v(z(ti),p(f.i))5_i (8.34)

a_, = _(t,+ at)- _(t,)

Prom Eq. (7.1), the incremental fluid forces in terms of their individual components
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At time t_+l, after n interva_ of A_, the increments] fluid force components at eac]_

time step may be added in the following manner to obtain the tots] force components.

/_..(_,+,) = _K..(=,,_,)a=, (8.35)
i=1

n

/_(_,+,) = _. _(=,,y,)ay, (8.30)
$--i

n

f,,_(t,÷_) = _ _,.,(z,,w,)a=, (8.3_)
i--1

.f,.,,.,(t,+,)= _ K,,,,(=,,_,)ay, (8.38)
/.--.1

11'/,

f=.(t,+_) = _ c.,.(_,,_,)6_, (8.39)
i=1

n

f=,(t,+,) = _(=,,_,),5_, (8.40)

f,.,.(t,+,) = __,_(=,,_,)6,_, (8.41)
i=1

IP,

J_(t,+,) = _ c,,,,(=,,_,),_#, (8.4_)
,---1

f,_.(t,+,) = _ M,,,,(z,,pi)&_i (8.43)
i_-1

n

f.._(_,+,) = _,,',..,,(_.,,y,),_, (8.44)
i----1

f....(_,+,) = _,_(=,,_,)6_, (8.43)
i---1

i=1

For JmemJtesims] quemtitim At, (6z,6y), (6__, &_) and (_}, &_), the summation may be

replaced by integration giving the following expressions.

/,...(t) = _'(')K.(z,_,),_ (8.47)
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f,,.(O

f_(t)

/.-(0

f-_(O

f_.(O

f_-(O

f._(t)

f_.(O

f_.(t)

u(t)= _(=,_)_
,tO

- fo'(')_.(=,v)d-

= /'(') K_.(=,v)dv
dO

= /o*(') C._(:,y)d_

= _(=,_)_
JO

= /o '(') c_(=,y)d_

_(t)= C_(=,y)d0
dO

= fo _(_)M.(=,v)_

_(0= m_(=, _)d_
dO

= fo i(t) rn_(=,y)d_

_(t)= Mt_(=,y)d_l
dO

These integrals for the case of a single DOF spring-mass-damper system are

shown in Figures 8.4-8.6.

(8.48)

(8.49)

(8.50)

(8.51)

(8.52)

(8.53)

(8.54)

(8.55)

(8.56)

(8.5_)

(8.58)

8.3.5 Evaluation of Integrals

Computation of each of the Integrals in Eqs. (8.51-8.61) requires the time h_tory

of d;sp]acement, velocity and acceleration of the rotor center as a function of time

t. Since each of these curves may have any number of cycles, the following valid

assumptions are made to reduce summation errors assuming no hystersis loss.

When the displacement z(t) is zm'o the following terms are set to sero and the
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X(x)

Figure 8.4 StJ._:ness Force Intesra]

c(s)

dx/dt

Figure 8.5 Damping Force Integral
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u(s

Figure 8.6 Inertia Force Integral

integration or summation starts from that instant.

Similarly,when !/(t)iszero the followingterms are set to zero.

Sim;]_, assumptions are made with respect to damping and inertia forces.

equal to zero the following terms are set to zero.

and at _(t) equal to zero the following terms are set to zero.

y.,(_(t)= 0) = 0

(8.59)

(8.60)

At z(t)

(8.6z)
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f_(_(t) = o) = o

At _(t) equal to zero the following terms are set to zero.

(8.62)

f,_(_(t) = o) = o

f,..,(_(0 = o) = o

and at _(t)equal to zero the followingterms are set to zero.

(8.63)

/.._(_(t) = 0) = 0

/.,,(O(t) = 0) = 0 (s.64)

The effect of these initia_ations is to reduce the accumulation of errors as the

integration is performed along the displacement, velocity and acceleration curves.

In practice, zero values are never realized and a change in the sign of a variable is

considered for the above initializations.

8.3.6 Summation vs. Integration

In the simulations with this model, the summation approach is used. The time

step At is made very small so that the summation approaches the integration process.

At -" t,_
s0---_ (8.65)

where t_ is the time period of the displacement curve.

8.3.7 Limitations of Method-I

The method developed in this section requires the evaluation of 12 integrals of

Eqs. (8.51-8.61). For a general motion, integrating each of these integrals involves two

highly fluctuating functions. The integrand, which is a dynamic coefildent varying
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with displacement, and the limit of integration which is either the displacement,

velocity or acceleration curve. Since closed form solutions are unlikely, one has to

resort to numerical integration to evaluate these integrals. The accumulation of errors

over a period of time due to approximate summation or integration schemes as well

as due to inherent approximate nature of the mode] may lead to inaccurate results if

care is no taken to limit these errors. The parameter At is critical for the accuracy

of this model if summation scheme is used.

A number of cases using the above method are included in the simulations.

8.4 New Method-II

In this section, the method-1 is simplified to make the computation of the Integrals

in Eqs. (8.51-3.61) easier and more accurate.

The method-1 developed in the previous section has the following drawbacks.

• Diftlcult to integrate complicated displacement, velocity and acceleration pro-

_lJe8.

• Accumulation of modelin 8 and integration errors as time progresses.

• Very small time step needed to maintain reasonable accuracy for summation.

In order to simplify the computation of" these Integrals a few assumptions are

made regarding the displacement, velocity and acceleration profiles. The main as-

sumption, to be verified, is that the previous time history of the motion has little

or no effect on the current state of motion t'or the bulk flow model used. Assuming

that the above statement is valid, the actual displacement, velocity and acceleration

curves may be replaced by approximate curves that are easier to integrate.
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The following assumptions are made regarding the displacement, velocity and

acceleration at any given instant of time.

1. The time tfistory of displacement is neglected and only the current displacement

is used in the computations. The displacement is assumed to increase from zero

to the current value in a linear fashion gradually, and independent of time.

2. The time history of velodty prior to the current time step is neslected and the

velocity is assumed to be linear with respect to displacement, i.e., velocity is

initially zero when the displacement is zero and increases to the current value

as a linear function of displacement while retaining its direction.

3. A s_ assumption is made about acceleration, i.e., acceleration is zero ini-

tially and attains its current value in magnitude and direction as a linear func-

tion of displacement.

as a function of the time-displacement curve.

8.4.1 Theory

As in the previous case, the incremental fluid forces at any given operating point

are are given by Eq. (7.1). At any given time t_, let the eccentricity or operating

position of the rotor be given by (e_,_i) or (z,,ltl), velocity by (V_,Ti) or (_i,_,) and

accelerationby '7,) or ( 17,).

The displacement is assumed to Increase _om (0, O) to (zi, I/i) linearly. At any point

along this path, the displacements are given by,

2: = • co8 _)i

y = eai,_ (8.66)
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e - V/_÷ y=

and velocity as a function of displacement is given by,

(8.67)

(8.68)

vi = _/_i= + fti:

tan'yi = -:-
zi

1) -" _e

and ncceleration is given as a function of displacement as,

(8.89)

(8.70)

where,

= V/$_• + _:

tanrli : _

a_
a = _e

e4
(8.n)
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The velocity profile may be rewritten as,

= (_)x

= (_)_ (8._2)

i.e., the velocity is assumed to increase from (0,0) to the current value (_,y_) as a

linear function of the displacement curve. S_ly, acceleration increases from (0, 0)

to its current value (_,_) as a linear function of displacement.

= (_)_

# = (_)_

Using the above assumptions, the Eqs. (8.47-8.58) may be rewritten as,

(8.z3)

f_(t,)

f_.(t,)

f,_( _,)

f._(t,)

_'_' K,.,_ (z, l,,) dz (8.74)

_" k._(z, p)dz (8.76)

_o"K,,(_,y)d_ (8._'7)

_" C,.,(_,y)(_),_ (8.78)

fo" (8.so)

M.(,,_)(_)_ (8.82)
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fo"= (8.84)

f.,_(t,) = _o Mcw(z'1/)(_ )dy (8.85)

The integration limits of the above integrals are much simpler as the velocity and

acceleration profdes are replaced by equivalent displacement pro_]e which is a simple

function. These Integrals can be easily computed using any of the various numerical

integration schemes available. Two methods_ one based on Simpson's rule and other

based on adaptive quadrature integration are used in this study.

As compared to the original method, this simplified method has the following

advantages.

• Total fluid reaction force is computed at each time step instead of incremental

summation and this elhnmates the problem of accumulation of errors.

• Integrals are easier to compute.

• The method is valid for any type of motion.
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CHAPTER IX

IMPLEMENTATION

Simulations involving various types of transient motion are used to study the

various approaches discussed in the previous chapter. The mode] used is a modified

Jeffcott rotor and is shown in Figure 9.1. It consists of a rotor floating in an annular

seal and is released from rest at time t -- 0 . Various types of known varying loads

are applled to the rotor and the resulting motion is studied using the following four

different models.

1. Bulk Flow Mode]: This simulation is done by solving the actual set of seal

governing equations for transient fluid forces at each time step. The results

from this study are used as a benchmark to compare the results of the other

models.

2. Linear Model (e = 0): This simulation is done using the dynamic coe_cients

computed at zero eccentricity, to compute the fluid forces. This is the model

currently in use at NASA/MSFC.

3. New Method-I: This simulation is done using the method described in section

8.1.

4. New Method-H: This is the simplified extension of method-1 and it assumes

approximate displacement, velocity and acceleration profiles to compute seal

forces.
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Y

X

Px(t).Py_t): external loads

Figure 9.1 Simulation Model

M.

Figure 9.2 Rotor-Seal Model used for Simulation
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9.1 Simulation Model

The equations of motion for the system used for simulation are given by,

= F.(t) + Ft__.(t)

= F,,(t) + rj_,__,,(t) (0.i)

where z(t) and y(t)are the rotor displacements from centered position and rnisthe

mass of the rotor.The terms F,(t) and F_(t) are the two components of the applied

external load, and Fl_,,ia-,(t)and F/_,ia_v(t)are the fluidreaction forcescomputed

using one of the four methods mentioned above.

This set of second order differentialequations are reduced to a set of firstorder

ordinary differentialequations which are then integratedusing a fourth order Runge-

Kutta integratorwith adaptive step size.

qx(t) = z(t)

q,Ct) = _(t)

q,(t) = _(t)

q4(t) = _/(t) (o.2)

q_(t)

,_,_(t)

,b(t)

_#,(t)

= q,(t)

= F.(t) + Fs_,,__.(t)

= q,(t)

= F,,(t) + Fj_,__,,Ct)

The initialconditions are given below.

(9.3)

_(t = 0) = 0
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q_(t= o) = o

q,(t = o) = o

q_(t= o) = o (9.4)

At each time step in the above integration process, a routine which computes

the i]uid force is called. The input to the routine is the current dispIacement_ velocity

and acceleration of the rotor center. The output is the the X and Y components of

the fluid force. The mass of the rotor used in simu]ations is 45.4 kg (100]b).

9.2 Time Step for 1¥ansient Analysis

In the simulations carried out with various models, the following time step is

used.

at = _" (9.5)
15

For the method-I, the following time step is used.

_n

at = 50-6 (9.6)

About 15-20 cycles of motion is studied for each simulation.

9.3 Fluid Inertia CoefFicients

The model used to estimate the seal forces has four inertia coe_cients M_,, mR,

m w and Mt_ to account for the fluid inertia forces. Of these ra W and "h_ are almost

zero. Strictly speaking, the coefficients Mn and M_ have to be added to the rotor

mass in the above simulation model. These fluid inertia forces are relatively small

compared to the other terms even at high frequencies. To simplify the computations

these inertia coef_cients are retained in the linear model and the accderation at the
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previous time step is used to compute these forces. This approach is checked by

includin 8 the fluid inertia coet_cients in the rotor mass and comparing the results.

The results indicate practically no change in the results even at very high frequencies.

9.4 Computation of Fluid Forces

In the simulations with bulk flow model , the fluid forces are computed by solving

the set of equations Eqs. (8.1-8.3) for the pressure distribution p(z,_,t) which is

then integrated alon 8 the length of the sea] to obtain the transient fluid forces. This

process is implemented in a continuous fashion from one time step to the next.

For linear model (e = 0) , the set of coefBcients for zero eccentricity are used for

computing the sea] forces. These coef_cients are obtained from sea] code TAMUSEAL-

III.

For new method-1 and new method-2 , the following procedure is implemented.

These two methods assume the availability of the 12 dynamic coef_cients as contin-

uous functions of the displacement (z, 9). Let these flmctions be specified by ga.=,

g_-_, g_ etc., as shown below.

g...C=,_)- K,,.(.,_,)

g,,,,.,,C=,v)-- _(=,_)

g_C=,v) = _(=,v)

g_(=,v)-- K,,,,,(=,v) (9.'z)

9=,(-,v) = c..(.,_)

g_C-,y) = _,(.,w)

g.,,.(,.w) = _-,.(,,y)
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= (e.s)

g,u=(z,y) = M==(z,y)

= (9.9)

These curves plotted as a function of eccentricity e are smooth curves with gradu-

ally varying slopes. They have no discontinmties or abrupt changes in function values.

This property of continuous and smooth variation as a function of eccentricity enables

these curves to be easLly fitted with cubic splines using only a few sets of data. These

splmes can then be interpolated to compute coei_cients at any given eccentricity.

A number of sets of dynamic coe_cients at various eccentricity ratios starting

from 0 to 0.8 are computed using the sea] code TAMUSEAL-III. About 10--12 sets of

dynamic coeificients at 0.05--0.1 eccentricity ratio increments are su:_cient for accurate

interpolation of these coefficients for intermediate values. The increment is made

smaller for the higher eccentricity region as the coeiIicients vary more rapidly in that

region. The data in Table 9.1 is the data used for all the simulations cases.

These sets of coemcients are obtained at an eccentricity angle of zero, i.e., along

the X-axis. Using a transformation, it is possible to compute these coemcients at any

eccentricity (z,y) using the eccentricity angle ¢. This transformation method has

been discussed in detail in section 5.4. The same procedure is employed to compute

dynamic coeil]cients in the global coordinate system as required in the simulation

model of Eq. 9.1.
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9.5 $p]ines of Coe_cients

About 12 sets of dynamic coe_cients computed at various eccentricities and at zero

eccentricity angle are fitted with cubic splines. This enables the computation of

the dynamic coef_cients in a pseudo-continuous fashion. For the case of a dL_torted

seal or a seal with a non-circular cross section a 2-D table will be required. The sea]

parameters for sea] unit 3-02 as given in Appendix E. A summary of these coe_c]ents

at various eccentricities is given in Table 9.1.

9.6 Transient Analysis Simulation Code: TP_NSEAL

The four different models described earlicr are implemented in the transient analysis

simulation code TRANSEAL. The input to this code is the dynamic coef_cients at

various eccentricities, sea] parameters and time step At. The output consists of

the fluid forces, the 12 individual force components, displacements, velocities and

accelerations at each time step.
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CHAPTER X

RESULTS

To study ea_ of the models described in the earlier chapters, various types of known

varying loads are applied to a rotor in an annular sea] and the resulting transient

motion is studied. The loads applied to the rotor are divided into the following six

categories.

I. Gradually applied loads (ramp function)

2. Harmonic loads (sinusoidal function)

3. High frequency loads (sinusoidal function)

4. Suddenly applied loads (step function)

5. Impulse or shock loads (impulse function)

6. Combination of the above loads.

I0.I Gradually Applied Loads (Ramp Function)

In this test case, a series of loads 1780N (400lb), 5340N (1200lb) and 8900N (20001b)

are applied to the rotor in a vertically downward direction in a gradual manner.

The loads follow a ramp function while increasing from a zero load at t = 0 to the

maximum load at t = 0.05a. In practice, this type of load results from side loads.

Each of these cases are repeated for the four models and the results are plotted as

comparison plots. For each case two plots are shown: the first plot includes the

time-displacement curve y(t) while the second plot shows the y-component of the

computed seal force Fy(t) as a function of time.
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The steady-state values of displacement y marked on the plots are obtained

separately from a seal code based on the dynamic analysis developed earlier. This

seal code solves the set of steady-state bulk flow seal governin 8 equations to compute

these values. These expected steady state displacement values are included/'or the

purpose of comparison.

The comparison plots t'or this case are shown in Figures 10.1-10.3.

The external forcing function/'or this case is given below.

F,,(t) = -(2o_) F= (o< t <_o.os,)

= -Fo (t > o.05s)

F,,Ct) = 0 (10.1)

where F= is the constant load.

The results t'or all the three approximate methods show good agreement with

the bu_k flow model for smaller load 1780N (4001b). For higher loads 5340N (12001b)

and 8900N (20001b), as the eccentridty ratio exceeds 0.4, the linear model (e = 0)

starts deviating from the actual mode] and this deviation increases as the eccentridty

increases. The displacement plot in Figure 10.3 for the 8900N (20001b) case dearly

shows the difference between these two models. Also, note the almost exact matching

of the results of the two new methods with those of the bulk flow model for all cases.

The plots for the fluid forces in Figures. 10.1-10.3 are all identical because the

rise time t_ is much larger than the time period t_ of the system. Therefore, the seal

reaction forces track the external load exactly in magnitude and without any phase

shLCt.

The following important conclusions can be drawn from these results.

1. The transient motion using bulk flow model converges to the expected steady
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state values exactly, thus verifying the transient analysis solution procedure.

The steady state values used for comparison are obtained independently using

a separate solution process.

2. Linear model (e = 0) yields good results for small displacements. At higher

eccentricities (beyond 0.3--0.4 eccentricity ratio) there is a marked difference

between this model and the actual model (Figure 10.3). This example illustrates

the need for a better model than linear model (e = 0) for motion with large

eccentricities.

3. The results of new method-1 and new method-2 exactly match with those of

the bulk flow model.

4. On a more important note, unrelated to the transient analysis, these results

validate the solution procedure of the dynamic analysis developed in earlier

chapters, zeroth order as well as fist order solutions. The results of this tran-

sient analysis establishes the equivalence between the bulk flow model based

motion and the corresponding motion described by the linear model of Eq.7.1

based on dynamic coefficients extracted from the first order solution. Generally,

it is taken for granted that these two solution match for small motion. These

results demonstrate, for the fist time for seals, this equivalence. This exercise

also may be used as a check case for the first order solution to verify that the

dynamic coefficients extracted from the first order solution are indeed the cor-

rect coefficients. In other words, this study may be used as a check case for for

the solution procedure, zeroth and first order solutions.
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10.1.1 Steady State Seal Forces vs. Spring Forces

In a sea] analysis, steady state seal forces are computed as function of eccentricity by

integrating the zeroth order pressure distribution along the length of the seal. The

two componenets of the seal force are used to estimate the load bearing capacity of

the seal. In the context of the new methods 1 and 2, these forces may be thought

of as forces due to spring stiffnesses as damping and inertia forces are non-existent

when the rotor is in a steady state operating position. The component forces fkee,

f/,_v, f/,w and f/,_v in the new method-1 and new method-2 represent the forces due

to direct and cross coupled stif[nesses.

Seal forces F_ and F_ shown in Figure 10.4 Seal forces Fo,__, and Fo,ol-_ shown

in Figure 8.9 are computed using the seal code as a function of eccentricity along the

X axis. If the new analysis developed is accurate, these forces should be the same as

the spring forces given below.

Seal forces F= and F_ shown in Figure 10.4 are computed using the seal code

TAMUSEAL-III as a function of eccentricity along the X axis. If" the new analysis

developed is accurate, these forces should be the same as the spring forces given

below.

F.,_. = + (10.2)

= /k,. + (10.S)

The plot in Figure 10.4 shows the steady state forces computed using both these

approaches. The results match exactly further validating the two new methods.
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10.2 Harmonic Loads (SinusoidalFunction)

In this test case, a series of loads at a frequency of lOOHz are applied to the

rotor. This type of forcing function is typical of the loading on the rotor due to an

unbalance. The external forcing function used for this test case is given below.

F (t) = F.

Fffi(t) = 0 (10.4)

where Fo isthe amplitude and f is the circularfrequency in Hz.

The loads used are 1780N (400)Ib and 5340N (12001b) at a frequency of 100 Hz.

The plots shown in Figures 10.6-10.9referto thiscase. There isexcellentagreement

between the bulk flow model and the all the three approximate models for 1780N

(4001b) and 3560N (8001b) cases. For the 5340N (12001b) case shown in Figure 10.8,

the linear model (c -- 0) starts to deviate from the actual model. However, the new

methods gives exact results.

An important conclusion that can be drawn from this case is that the the linear

model (c = 0) is accurate even for relatively large displacements provided the rotor

vibrates about the same static operating point and the set of dynamic coefficients used

correspond to that operating point. This is interesting since the basic assumption of

the linear model (e - 0) is that it is valid only for a small motion about the operating

point.

For the next case shown in Figure 10.9, the oscillating rotor is forced to move to

an eccentric position by the application of the following forcing function.

F,(t) = (200 F. + F. ,,in(2,,/t) 0 < t _< 0.05,

= Fc + F. ,in(2_rft) t > 0.05,
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= 0 (10.5)

where Fc isa constant load.

This example (Figure 10.9) clearlyshows the effectof the movement ofthe rotor

operating position away from the centered position as predicted by the bulk flow

mode vis-a-visthe same motion predicted by linearmode (e = 0) . There is an

appredable differencebetween these two models. The two new methods givealmost

exact results.

The following conclusionsmay be drawn based on these test cases.

1. The example case in Figure 10.8 refers to the large eccentric motion type-1

mentioned in Chapter VII. The case in Figure 10.9 refers to large eccentric

motion type-2.

2. An annular seal operates almost like a linear element for steady state motion

about a given static point.

3. The linear model (e = 0) gives good resultseven for relativelylarge rotor

displacements (e > 0.4). For example, ifthe rotor is whirling about a static

operatingpoint,thismode yieldsacceptableresultseven forlargedisplacements

ifthe set of dynamic coeflidentscorresponding to thisoperating point are used.

4. However, the above statement is not true in the case of the transient motion

shown in shown in Figure 10.9 where there is actual movement of the center of

rotor to an eccentric position.

5. The two new methods agree exactly with the actual mode both for steady state

as well as transient operation.
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10.3 High Frequency Loads (Sinusoidal Function)

The rotor of the SSME turbopump runs at about 25000 rpm, i.e., about 417 Hz. Any

unbalance forces i_ the rotor system will vary as a function of this frequency. To study

the effect of such unbalance forces at very hlgh frequencies, dJ_erent harmonic loads

at 500 Hz and 1000Hz are applied to the rotor and the transient motion is observed.

The loads applied are 2225N (500lb) and 15570N (35001b) at 500Hz, 17800N (4000lb)

and 3560N (80001b) at 1000Hz.

The forcing ftmction is similar to the previous case.

Fy(t) -- Fo Jin(21rft)

F.(t) = o (10.6)

The results are shown in Figures 10.10-10.12 for the 500Hz case and in Fig-

ures 10.13-10.14 for 1000Hz case. Again, as in the case of harmonic loads at 100

Hz, there is good correspondence between the bulk flow model and the other three

methods at both 500 Hz and 1000 Hz cases. Also, these results confirm that the two

new methods work at any frequency.

To look at the motion away from the centered position, the rotor is forced to

an eccentric position and the results in Figure 10.12 once again dearly show the

difference the linear model (¢ - 0) and the actual model. Also, the results of new

method-1 and new method-2 exactly match those of the actual model.

The external forcing hmction for this case is given below.

F_(t) - (20t)Fc + Fo sin(2rft) (0 < t < 0.05,)

= F, + F. ,in(21rft) (t > 0.05,)

F,,(t) = 0
(10.7)
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10.3.1 Fluid Inertia Forces at High Frequencies

The plots shown in Figures 10.10-10.14 may be studied to observe the effect of

fluid inertia forces at very high frequencies. The results of the three approximate

methods based on linear model compare very well with the bulk flow model results.

These results show that the effects of fluid inertia effects at very high frequencies do

not show any significant di/_erence from the bulk flow model.

10.4 Suddenly Applied Loads (Step Function)

In this type of loading, the load is applied suddenly similar to a step function.

The resulting motion after the transient state settles to the gradually applied load

case discussed earlier. The loads applied are 1780N (4001b), 3560N (8001b) and 5340N

(1200lb). This motion is almost similar to an impulse or shock load as the rise time

t, is much smaller than the time period Tn of the system. This is a good test case

for the two new methods because of the rapidly varying motion. The results for this

case are shown in Figures (10.15-10.17).

The linear model (e - 0) for 5340N (12001b) case in Fig. 10.17 shows that the

motion not only has a different overshoot but is also quite a bit out of phase and it

settles to the wrong steady state value. The new method-2 has some overshoot, but

maintains the phase and settles to the expected steady state value.

The forcing function for this case is,

F,,(t) = o ( t = o)

= -F, (t >

F=(t) = o

o)

(lO.8)
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10.5 Impulse Loads (Impulse Function)

This form of excitationoccurs over a very short period oftime. Let tabe the time

of force duration and t,,the time period of the system. Ift_ << t_ then the applied

forceisclassifiedas an impulse or shock load. Impulse isa forceapplied over a short

period of time and is defgned as,

fO0 t4I = .:(t)dt (10.9)

where f(t)is the forcingfunction and I isthe impulse. The units of impulse are N-s

or N-ms. As long as t_<< t,,,the form of f(t)isnot important.

The effectof an impulse on a mass-spring system isto give the mass an initial

vdocity given by,

and an initial displacement of zero.

!
=_(0) = -- (10.10)

rrit

=(o) = o (lO.11)

where m ismass of the system.

In thisexample case,impulse loads of 2225N-ms (5001b-ms), 4450N-ms (100Olb-

ms) and (18001b-ms) are applied at time t = 0.025s and the motion studied. An im-

pulse of2250N-ms (500 Ib-ms) refersto an impulse function ofa load of 2225N(5001b)

actingover a period of I ms. Of allthe types of loading considered so far,thistype of

load resultsin maximum overshoot and generally a very rapid varying motion. The

resultsfor thiscase are shown in Figures. 10.18-10.21.

For motion at an eccentricity,the following forcingfunction is used. with Fc =
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15001b and I = 5001b-ms.

F,(t) = (40t)Fc (0 < t < 0.025,)

= F, + I6(t - 0.50) (t > 0.025,)

Fro(t) = 0 (10.12)

It is interesting to note that the transient motion predicted by linear model

(e = 0) in Figure 10.21 is almost 1800 out of phase with the actual motion.

10.6 Combination Loads

For the final simulation exercise, all the different loads considered in the previous

simulations are applied simultaneously. The forcing function for this case is given

below.

F_(t) = (40t)Fc ÷ Fo,in(27rft) (0 < t < 0.025,)

= Fc ÷ F,ain(27rft) ÷ I5(t-0.03) ÷ I6(t-0.038)

F.(t) = o

where

Fc = 1300 lb

F° = 1000 lb

/ = 500H_

I = 500 lb-ms

(0.025 < t < O.05a)

(10.13)

and the impulse is applied at t = 0.03s and 0.038s.

The results for this case are shown in Figure 10.22.
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10.7 Comparison between Bulk Flow Model and Linear Model (e = 0)

In Chapter VII, large eccentric motion of the rotor has been classified into the follow-

ing two types.

1. Motion with a large amplitude about a static operating point, such as oscillation

about the centered position.

2. A similar motion, but with center of the rotor moving in an arbitrary fashion

away from the center of the seal.

The results from this study confirm the following general observations for large

eccentric motion.

1. Linear model (e = 0) gives good results as long the the rotor vibrates about a

static operating point, in this case the centered position, and the set of dynamic

coeitlcients used in the model correspond to this point. For this type of motion,

this model is accurate even for relatively large displacements (e > 0.4) and the

seal behaves like a linear element.

2. As this operating point moves away from the centered position, the results

start deviating from the actual model and these deviations get bigger as the

eccentricity increases, i.e. for e > 0.4.

10.8 Comparison between Bulk Flow Model and New Method

The new method-1 and new method-2 give almost similar results for motion with

smoothly varying displacement, velocity and acceleration profiles. For this type of

motion the summation technique of new method-1 works well. However, for motion

with rapidly varying displacement and velocity profiles with abrupt changes in func-

tion values (sharp peaks and valleys) the summation or integration process encounters
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problems in somecases. An exampleof this caseis given in Figure 10.23. In this

simulation, an impulse of 18001b-ms is applied to the rotor and due to the sudden

change in velocity and acceleration i.e., discontinuities in the motion, the results are

not accurate. Also, for new method-1 the time step At is critical for accurate evalua-

tion of the integrals in Eqs. (8.47-8.58) using summation method. The effect of time

step on the accuracy of this method is shown in Figure 10.24. The first case with a

fine time step gives exact results. The second case with a coarse time step results in

an erroneous simulation.

However, new method-2 is impervious to such problems as integration is carried

out only with respect to displacement and total fluid force is computed at each time

step.

The following observations may be made about these two approaches.

1. The results show virtually no difference between new method-1 and new method-

2, indicating that past motion has practically no effect on the current state of

motion for the bulk flow model used.

2. These two methods vastly simplify the computational procedure compared to

the bulk flow model

10.9 Conclusions

This work examines the differences between the linear model (e = 0) and the

actual bulk flow model for large eccentric motion of the rotor. This study confirms

considerable deviations between the two models as the rotor is moved to a large

eccentric position away from the center of the seal.

An innovative method to model the seal forces more accurately than the current

model is developed and tested extensively for various types of transient motion.
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The following tasks are accomplished in this study.

1. Developed transient analysis capability using the original bulk flow governing

equations.

2. Established the validity of the transient analysis procedure by comparing the

transient analysis results with the steady state results v_lues obtained form

TAMUSEAL-III .

3. Established equivalence between linearized coefficients based transient motion

and the same motion as predicted by the original governing equations.

4. The linear model (e - 0) gives good results as long as the rotor vibrates about

the centered position or a fixed static operating point (with corresponding set of

dynamic coefficients). This model is valid even for relatively large displacements

about this point. For this type of motion, the seal almost acts like a linear

element.

5. However, if the rotor operating position moves away from the centered position

such as in a transient motion, the results show appreciable differences between

the linear model currently in use and the actual bulk flow model for eccentricity

ratios above 0.4, the point at which the linear model (_ -- 0) starts deviating

from the actual model, and there exists a need for a more accurate model in

this region.

6. Developed a new method and tested it for various types of transient motion.

This method is valid for any type of motion including motion at large eccen-

tricities.
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7. For the bulk flow model , fluid inertia forces are not sign_cant even at very

high frequencies.
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CHAPTER XI

SEAL CODES

To implement the analysis developed in earlier chapters, a series of codes were written

as a part of this research. All the following codes are currently being used at NASA

Marshall Space Flight Center as primary tools of seal analysis and design of the

interstage seals of SSME-ATD-HPOTP. Brief details of these various codes are given

below.

11.1 Tamuseal-I

• Concentric seal analysis.

• Original Nelson and Nguyen model.

• Straight, tapered and axially varying profiles.

• Moody's and Hits' friction modes.

• Constant properties.

• Very good agreement with check cases.

• Runs on UNIX based workstation, VAX.

11.2 Tamuseal-II

• Eccentric seal analysis

• Constant properties.

• Improved dynamic analysis.
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• Moody's and Hits' friction model.

• Arbitrary profile, axial and circumferential.

• Distorted seal profile analysis.

• External load and eccentridty based analysis.

• EfBdent and better mathematical algorithms.

• Good agreement with check cases.

• Runs on UNIX based workstation, VAX, and CRAY.

11.3 Tamuseal-III

• Eccentric seal analysis.

• Constant properties.

• Variable properties from NIST12 (LOX and LH2)

• Improved dynamic analysis.

• Moody's and Hits' friction modal.

• Arbitrary profile, axial and circumferential.

• Distorted profile analysis.

• External load and eccentridty based analysis.

• EfBdent mathematical algorithms.

• Good agreement with che& cases.

• Runs on UNIX based workstation, VAX, and CRAY.
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11.4 Tamuseal-IV

• Eccentric seal analysis.

• Constant properties.

• Variable properties.

• Thermal Effects with variable fluid properties.

• Improved dynamic analysis.

• Moody's and Hirs' friction model.

• Arbitrary profih, axial and circumferential.

• Distorted profile analysis.

• External load and eccentricity based analysis.

• Efficient and better mathematical algorithms.

• Very good agreement with check cases.

• Runs on UNIX based workstation, VAX, and CRAY.

11.5 Transeal

This is the code developed for the study of transient analysis with an annular seal It

has the ability to do the following simulations. Given time dependent displacement,

velocity and acceleration of the center of the rotor, the code computes the transient

seal forces as a function of time using one of the following four models.

• Original bulk flow governing equations.
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• Linear seal model (_ = O) with dynamic coe_cients computed at zero eccentric-

ity.

• Using New Method-I.

• Using New Method-II.
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CHAPTER XII

CONCLUSIONS

In this work, a new dynamic analysis for liquid annular seals with arbitrary profile

is developed based on a method originally proposed by Nelson and Nguyen. The

following modifications are made to improve the original method.

1. Improved zeroth order solution based on cubic splines versus FFT method of

Nelson and Nguyen. The improved method shows better convergence at higher

eccentricities and yields solution for cases where the original method had failed.

2. A more exact first order solution based on continuous interpolation of first order

variables. A new set of equations are derived for dynamic analysis.

The analysis developed is extended for cryogenic seals for the following models.

1. Constant fluid properties.

2. Variable fluid properties.

3. Thermal effects (energy equation) with variable fluid properties (concentric

case).

A unified solution procedure that is valid for both Moody's friction model and

Hits' friction model is developed. Dynamic coefficients based on external load speci-

fication are introduced for seals for the first time. The analysis can be used to model

seals which support a pre-load.

Arbitrary profile seals are discussed with reference to an elliptical seal. Unique

differences that exist between regular straight or tapered circular cross-section seats

and arbitrary profile seals with a circumferentially varying clearance are analyzed.
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A study on the effect of orientation of minimum fzlm thickness system on computed

dynamic coefficients is conducted. A general distorted interstage seal of SSM_-ATD-

HPOTP is analyzed as an arbitrary proftle seal and the results are compared to an

an average clearances profile seal.

The predictions of current analysis are compared with a number of experimental

and theoretical cases from sea] literature. Based on the comparative studies the

following conclusions are drawn.

1. Good comparison with original Nelson and Nguyen method (1988a,1988b). Bet-

ter results for cases where the original method had failed.

2. Good comparison with Childs' (1985) Hit's and Moody's friction model based

analyses.

3. Good comparison with Scharrer and Nelson (1990), except for a discrepancy

noted in their results.

4. The deviation between current analysis (variable properties) and San Andres'

analysis increase with eccentricity. These differences vary from case to case.

5. The difference between current analysis (thermal effects with variable proper-

ties) and San Andres agree well for the concentric case, except for cross coupled

stiffness.

The work on transient analysis with an annular seal examined the differences

between linearized coefficients based motion and the actual motion based on bulk

flow gover_xi_g equations. This study contLrms considerable deviations between the

two models as the rotor is forced to an eccentric position of e > 0.4.

Based on this study an equivalence is established between linearized coefficients

based motion and the same motion based on bulk flow governing equations for small
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motion. This study may be used to compare the accuracy of solution (dynamic

coeffcients) of a particulax dynamic analysis.

An innovative method to model non-linearities in seal forces is developed. This

method models seal forces more accurately than the model based on a single set of

dynamic coeffcients. This method is tested extensively for various types of transient

motion.

The following conclusions are drawn from this study.

1. Linear model (e = 0) gives good results as long as the rotor vibrates about the

centered position or a fixed static operating point (with corresponding set of

dynamic coefficients). This model is valid even for relatively large displacements

about this point. For this type of motion, the seal almost acts like a linear

element.

2. However, if the rotor operating position moves away from the centered position

such as in a transient motion, the results show appreciable differences between

the above linear model and the actual bulk flow model, for eccentricity ratios

above 0.4. This is roughly the cutoff point where the linear model starts devi-

ating from the bulk flow model, and there exists a need for a more accurate

model in this region.

12.1 Future Work

One of the areas of improvement for the bulk flow model is the treatment of entrance

and exit loss coefficients. Typically, in a seal analysis these coefficients are treated as

constants. It is an accepted fact that these loss coeffcients vary with the inlet and

exit geometries and Reynolds number. A more realistic model for this loss coefficient

would be a varying coeffcient around the inlet and exit circumferences.
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The other area of improvement for high pressure seals is the inclusion of elastic

deformation of the sea] housing. Some preliminary studies (lwatsubo, 1987) have

already been done in this area. Future work should combine all these various analyses

into a combined thermoelastic-hydrodynamic (TEHD) analysis.
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APPENDIX A

CONSTANT PROPERTIES MODEL

Zeroth Order (Steady State) Equations:

ooj{o}0 pohouo 0 _ = F,

pohouo 0 ho _ Fp

whe,re

(A.Z)

Oho poVo Oho pol_ OVo

F,, = -poUO oz R O# R O#

F, = pohovo Ovo ho O_
R 08 R 08

_o 1_ Vo
- po{S.o_-v_o_+ (,o-_), + s_-_v_._+

pohovo OVo

R 08

12o

- P°{/'°('_°2-'_)_/,,o'+ (,_o- ,_), + S.oF_o,+ voq

(A.2)

(A.3)

(A.4)

First Order (Perturbed) Equations: Continuity:

_z ho Ouo Ohoul 1 Ohoh_ + -___ + _ + ____.,, =

Arial Momentum:

Oho Oho
----_ - uo oz

_ (a_u_ 10v.
o= + -g-_)h,

vo(gho
R o8

(A.5)

"_z hoOpo hoVoO=o_,uo + +
po Oz R 08

015 o

+ ho'--_ + A_ul + Aov, = Ahhl (A.6)

Circumferential Momentum:

houo_ + hOVOR0vo08
_ovo

+
_R Off + -'Or + B,,ul + B,v, = Bhhl (A.7)
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The coefl]cient expressions A_, A, etc., in the above first order equations are defined

below.

a_

B_

- h o_ ,,p.° _,o)
- °o-; + "°t-O-_ + U,o + (F.o_.o + F,oV,o) (A.S)

hoOuo , P.o= _-_ + uolVOVo---_ + (Vo-W) } (A.9)

_ 10_ OUo Vo OVo _oo- po o_ ,,o Oz __o_ + (H.oU.o + H,oU,o) (AS0)

= ,,o_- z + UotVOUo--_ + (vo-w) } (A.11)

Ovo , P.o= R O# + Vo-_--_ + (Vo-w)' + FooUoo + F, oU, o (A.12)

10_ Ovo vo Ovo

= Rpo 08 uo• Oz R 08

+ _-_{voH, oU, o + (Vo-w)H, oU, o} (A.13)

(A.14)

with further deKaitions for Moody's and Hits' friction factors and their dependent

terms, f_o, f,0, F,o, F,o etc., given in Appendix D.

The first-order governing equations are expressed in terms of the a_(z,8) and

b_(z,8) functions as;

ho Oaa Oh uo Oh. hovo Oas houo Oas

p Oz + (.4,, - ,,o_)", + h,,,,,a,,(a. -R "_)'_ = R 0/3 + R O_

Ou 10v
(A._5)

ho Oa2 howas + (A_ Oh uo Oh
p oz -_o_),,+(a. g_),. = _._oco,# ao_oOa,R 08

_uo 0a_
+ R 08 (A.16)

h Oas Oh 1 Oh Ou 10v Vo ho Oas

o--_;+ g,,, + _,,s = ,-.[(g + _),.o,_ - -k-,i,_8] R o8 (A.1T)
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hoOa4 Oh 1 Oh ho Oa6

Oas ho Oal
houo'_z + B,.as + B.a5 + howa6 = -c..Bneos/3

Rp O_

h Oa6 ho Oa2
oUO'_z + B,,a4 - howas + B,_a6 = Rp 013

hovo 0_5

(A.18)

(A.19)

ho Oh1 Oh Uo Oh

"7 0--7 + (a,, - ,,o_)_ + ho,.,b, + (a. R -_)b_ = -c.,,WuosinB

houo Obs
+

R a_

hovoOh3

ho Oh

ho Oh= Oh Uo Oh

Ou 10v . UoVo ..,, hovo Ob4

-_[(a,, +,,o(_ + _._)),,,-,_ + --k-_o,m R o_

+

houo Oh6(A.22)
+ RO/_

ho Og6

ho O_

hovo Obs

ho Obs
(A.23)

(A.24)

(A.25)

Rp 0/3 R 0_3 (A.26)
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APPENDIX B

VARIABLE PROPERTIES MODEL

Zeroth Order (Steady State) Equations:

poho 0 houo-_

0 pohouo 0

pohouo 0 ho

where

{°}=8,

F_

F_ (B.1)

Oho povo Oho

F,, = - poUooz a O_

F,, = pohoVoOvo ho Opo
a OZ a OZ

"° ,,' (,,o- _,)'- po{y.oT_/o+
poho vo OVo

R OZ

- po{f,-o(vo-
2

pohoOvo
a oZ

hoVoOpoOpo
R omaz

+ _-¥v _o+ _}

t lpO _") _/,,_+ (,o- ,,,)_+ _.oyv_.o+ ,,_}

First Order (Perturbed) Equations: Continuity:.

(B.2)

(B.3)

(B.4)

povoOh1 pohoOvx voAoOpt _ Ou, _z Op_a o# + a o# + a o# + P°n°-_z + Uoho + hoA,1--_

Ohl Oh1
+A,,ul + A,,vl + A_,p1 = -pouo Oz P° Ot Ahh, (B.5)

Azia[ Momentum:

hovoOul _ hoOplR 0_ + hoUo + po Oz + ho-'-_ + B,,ul + B,,v, + Bppl

= Bt, hl (B.6)
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Circumferential Momentum:

hovo Or1 ho Opl
÷

R a_ poR a_
Ovl L Or1

+ nouo'_z-"z + ,,o'_- + C_ul

(B.7)

The coefficient expressions A_, A_ etc., in the above first order equations are

defined below.

Oho
.4,, = ?O-_z + ho_ z

A,, = poOho ho Opo
Ro_ + ROB

Ap = VoOho + ho OVo
R oZ ROB

Apa = Op__.oo

A_, = ApAea

Ah Po Ovo vo Opo= +
R O_ ROB

Apa = Op..._.oo
Opo

Aux = 0#o

aho hoOUO
+ u°'-_z + Oz

Bh =

B u =

OUo Opo
+ poT; + ,,,,,--_

o,,0 ,,p,. _'.o)B. = ho-_- + uot_r-7o,o +u.o + Y,oU,o + F.oV.o

B. hoOuo $'.0= k 0---_+ "°{"°V_. + (,,o-,.) }

ho u° "{G.oU.o + G, oU, o}
po' po

10po OUo Vo OUoPo Oz Uo Oz R OB + (H.oU.o + H, oU, o)

-_(G,oU.o+ G,oU,o)

Bp = B.A,,1 + B,,A_,I

(B.8)

(B.9)

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)
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c. = ,.o_; + ,,o_o_-2 + (_o-_) )

hoOvo 2F.oC, = -_--_ + vo_-_-_ + (Vo_W)= + F,oU,o

1[ ho Opo
c, = po Rpoaft + 6,oG.oU.o+ (_,o- w)G.oU.o}]

c. = _{,,oG.oU.o+ (_o-_)C, oU,o}

10po Ovo Vo OVoC,, -
Rpo Off 11.oOz R Off

+ _{voH, oU,o + (vo- w)H, oU,o}

CpApl + CuA,.1

+ F,oU,o

(B.22)

(B.23)

(B.24)

(B.25)

with further definitions for Moody's and Hits' friction factors and their dependent

terms, f,o, f,o, Fo,, F,., etc., given in Appendix D.

The first-order governing equations are expressed in terms of the a_(z,fl) and

bi( z, fl) functions as;

1 . Oa 1

ho_o(A,,,- _)Tf z + (A,,
uo

howPo
a4 + (A_- P°)as = c"P°V°sinfl + c..&,cosfl

uo uo R

hoPo Oas hovoApl Oax _poBh hoPoVo Oa3
+ +

R Off R O_ uo Ruo 0_

-P°Bv)a_ + howA,_a_ + (A_-P°B,,)as

(B.2S)

1 . 0a 2

ho_o(A,,- _) T_

+ (.4,, -- P--°B,,)a, + (,4,, - P°B,,)_ =
uo uo

hovo On. hopoVo On4

R Off + Ruo O#

_,,,,A,,,,,, + (A, _B,)a, + ho,,po_a, 3
_0 t40

- c,,powcosfl hopo Oa6

(B.29)

hopo(Z-A,_,g)T; + (a,-po,,oA,,B,)., + _.,A,_..

+ (Au-pouoA,_B,,)a3- howpoAp_a, + (A_-pouoA,_B,)=
c.povo

R
sinfl
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+ c, Ahcosl3 hopo Oas
R o_

hapouoVo 40as

hovoA Onl
"-_ .'_pl-_ + c.,,BhpouoAplcosl9

(B.30)

hopo(1- tto_pI) _z

"4- (A_- pouoAt, lBu)a 4 + (A_ - pouoA,zB,)a6 =

hovo_ Oa2 hopoUoVo. Oa,

howA,la, + (Al,-pouoAplBp)a, ÷ howpouoApxas

hopo Oae
- _powcOSB

(B.31)

0tl_

houo-_z + Cj, at + C_,as + C_a5 + howa6 = -c.,,Chcosl3

hovo Oa5 ho Oaa

R O_ Rpo O_
(B.32)

0ths

houo-_z -4- Cpa= q- Cua4 - howa5 "4" Crag "-

hovo Oae

R oZ
ho 0a2

Rpo O_
(B.33)

1 . abx _ B e)b] ( A_ POloBu )asho_o(A,,- _)-_; + (.4,- + -
_J

+ (,4,, - P°B,,)b5 = -C, powsin_ hopo Obt hovo A Oba

hopoVo Oh3
+

Ruo O_
(B.34)

1 Oh2 Po howpo

houo(Ap_ - _-_) "_z howApxbx + (A e - __-_B_')b2 + -._

+ (A,,-_B,.)b, + (A.-P°B.)be = _t'°"°eos, + _Ahsi,,_
Uo Uo R

hoPoObs hovoApl Ob_ + c..poB..____hsinB+ hopovoOb4
R o_ R o_ 1,o R_ o_

(B.35)

hopo(1-At_u_)_z + (Ap-pouoAp_Bt,)bl + howa,,bz



254

÷ (.4,,-po,,oA,_B.)h - ao_poA,_h ÷ (.4.-po,,oA,,B.)b, = c.po,_,i,=#

hoPo Oh6 hoVo A Oh1 hoPoUoVo A 1Oh4 (B.36)

• 064

_po(1-_A,.1) _ ho,.,Apl_÷ (A,-po,,.oAp_B,.)_* ho,,,po,_oA,_h

÷ (_-po_A,,1B,,)h ÷ (A_-po,_oA_Bo)b, - c_'°_o,_ + c.Ah,i,_

hopo Obs hovo _ Oh2 hapouoro . Oh4

R O# -'_ .'_pl-_ + c, BhpouoA,_sin_ + R A,_-_ (B.37)

houo_--_b_ + C1,bl + C,,bs + C,,bs + howbe

hoVo Obe

R O#
ho Oh1

RpoO#
(B.S8)

Obs -c.Chsin#
houoTz + C,,t_ + C,,b4 - ho_bs + Co_ =

hovo Oh5 ho Oh2
R O# Rpo 0/3

(B.39)
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APPENDIX C

THERMAL EFFECTS WITH VARIABLE PROPERTIES MODEL

Zeroth Order (Steady State) Equations:

poho 0 ho.o_ ao.o a_

0 pohouo 0 0

pohouo 0 ho 0

0 0 T_.hoUo -poCvhouo

wh_e

r

81

81

e_
8I

ear
81

I

._]

(c._)

aho
F,, = - poUO Oz

hovo 8po 8To

povo 8ho poho Ovo hovo Opo cgpo

R O_ R O_ R O_ O_

R OToOZ
pohovo Ovo ho Opo

R O# R O#
11'° 2- po(S_v_. + _'o+ S,oTq, o+ (_o-_)'}

pohovo OVo

R a_

_ __. _o_ _o'+ - w)_/,,o'+ (_o- ,0'}_'°lJ'°¥ v'° + "f'°(v° 2

,., hovoOTo hovoapo + Qo

,.,,_ O_ _'or"o. ,, (1,0-,,,)
- w_l'2"R _ + 4ho 1" 2 j.o--.o _ f, oR,.o}]

_ ,,o , S.oyq,o+ (_o-w),},,opo(S.o¥_+_o' + -o .

_ _ _ ,. _o,/,,, _,I + Do(_° 2o_o_v o+ - '_)V"',+ @o-w)'}

The first order equations are given in Appendix B.

(C.2)

(c.3)

(C.4)

(c.5)
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APPENDIX D

FRICTION FACTORS

tcrzzl

/,o

g,o

g,.o

h,o

h,o

Foo

E.o

G,o

G,.o

H,o

/'/,.o

$',.0

U,o

U,o

R,o

P,,o

Moody's Modal H.irs' Model

f,oM = oooss (104_. ine_Z/,l_[1+ +-_ a.oJ J

f,o. =T[Z+°'°°"(10'_ + 10'_) _/']
o.oossx*o'(104 ln6 z___-=/sg,,o.u"= Z_.o _ + "_ a,o J

°.°°'_'°'(zo'_-+ zo'_)-':-'g,o= = z-3-P,.,:o"

O.OOSS(1N4 ¢_.L 1N6 I.__'tI/3
h.oM = 12 _'_ ho + "- a.oJ

0.0055 (1{'14 e,,,/_ou = ,= ,-- _ + I0'_) _/3

.f.oM/2

1,0,,/2

g,oM /2

g, ou / 2

h,ou /2

h.,ou/2

(/.o,_ - g.ou )12

(hou - 9,o,,)12

V_oo+ _

V,,'o+

f tOH "- ne._RO e

f ,o_ = '_ J_Co"

g,oH = -m,n.[R,o]""

g,os = -m,'_,[R.,o]"_

h.o. = -m,n,[R,o]'"

Los = -,',=,.,',,.[_o]""

f.osl2

f, oa/2

g.o._ /2

g, os /2

h,os/2

/_oH/2

(/.oB - g,o8)/2

(.f, oa - g,.ou)/2

_o+ v_

_/,,'o+ (-o--)'

. VUo+ (_o- _)'
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APPENDIX E

CLEARANCE FUNCTIONS FOR ELLIPTICAL SEAL

The clearance functions for the elliptical seal are given in the next table as;

straight pro£de //near pro£de quadratic pro£de

Y,C_)= bl

8_A= 0
8_

e_.h= 0
8z

al =R+e/

y_(z) = al + a,z

f,(z) = bl + b,_

8-]A. = al
Oz

- b2
8z

ax =R+ci

1
a,= z(c,- c,)

Yl(z) = al + a,z + a3z"

/,(_) = bl + _ + _'

= a2 + 2asz
8z

= b, + 2b3z
8z

al=R+_

-1
a, = T(c, - 4c_+ 3c_)

_, = b(_, - 2_ + _)

bl = R + (I - 6)ei

= -_(i- s)(_,- 4_ + 3_)

b,s = -}(1 - S)(c_ - 2c¢,_ + _))

Gradients of the clearancefunction for ellipticalsealare given by;

_(_,_) = ((f,(z)_o,_)" + (/,(_),,_,_)"
Oc fzf_cos'_ + f,f_sin'_

013 _/(f,co$_)' + (rasing)'

-R (Ea)

(E.2)

(E.3)
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APPENDIX F

EQUATION OF STATE

The modified Benedict-Webl>-Ruben Equation of stateis given below.

p = pRT +

p'(G(1)T + G(2)T _/' + G(3) + G(4)IT + .G(5)/T=) +

p3(GC6)T + G(7) + GC8)/T + G(9)/T') +

p4(G(IO)T + G(ll) + G(12)/T) + pS(G(13)) +

Pe(G(14)/T + GC15)/T =) + p?(GC16)/T) .+

pS(G(17)/T + G(18)T') + p°(G(19)/T=) +

p3(G(20)/T= + G(21)/T s) e'yP +

pS(G(22)/T= + G(23)/T 4) e"" +

p_(G(24)/T' + G(25)/T 3) e",'_ +

p'(G(26)/T' + G(27)/T 4) e"¢_ +

pn(G(28)/T= + G(29)/T 8) e',P +

pI"(G(30)/T= + G(31)/T 3 + G(32)/T 4) e_'

The expression for viscosity is given by,

p_ = _ G_(i)T (4-O/s

p,(T)

p,(p,T)

F(p,T)

#o(T) + #,(T)p + #,(p,T)

4----1

= F_(1) + F,,(2) {F,,(3) - In(T/F,,(4))}=

-- eF(p,T) _ eG(T)

= Ev(1) + Ev(2)H(p) + Ev(3)p °a +

(F.1)

(F.2)

(F.3)

(F.4)

(F.5)
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G(T)

H(p)

E_C4)H(p)IT2 + E_C5)p°'_IT_'6+

E_C6)IT+ E_CT)HCP)IT

= E_(1)+ E_C2)IT

= p0_Cp_ Ev(S))/E_(S)

(F.6)

(F.7)

(F.8)

The variation of density with respect to pressure (isothermal case), _ (1/8_p)is

_iven _

Op
RT +

2p(G(1)T + G(2)T *12 + G(3) + G(4)/T + G(5)/T _) +

3p2(G(6)r + G(7) + G(8)/T + G(9)/T _) +

4p'(G(10)T + G(II) + G(12)/T) + 5p'(G(13)) +

6pS(G(14)/T + G(IS)/T _) + 7p'(G(16)/T) +

8/(G(17)/T + G(18)T_)

{3p=+ 27p4}(G(20)/T2 +

{5/+ 27p'}(G(22)IT'+

{7p'+ 27p'}(G(24)/T_ +

{gp'+ 27p'O}(G(26)/T'+

{119104-27912}(G(28)/T' .+

{13px2+ 27pI4}(G(30)/T' +

+ 9p'(G(19)/T_)+

G(21)/T')•_" +

G(23)/T')e_p"+

G(25)/T')e_ +

G(27)/T')_; +

GC29)/T')e"" +

G(31)/T' + G(32)/T 4) e"" (F.9)

The variation of viscosity with respect to pressure (isothermal case), -_ (_ x -_)

is given below.
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OH
I 0.5 po.6]

_(s)[7{p- E_(s)}+

(F.Z0)

(F.Zl)

B_ 1 ---

Op

Op
_pl _"

a,
D#

A_,I = -_p

A_I = ApI × B_I

(F.12)

(F._3)

(F.14)

(F._5)
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APPENDIX G

LIQUID SEAL DATA
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The following data is for Childs and Lindsey (1993)

Seal Data for Childs/Liadsey (1993) Case

seal length, L

rotor radius, R

c_

c,

fluid

density, p

viscosity #

pressure drop, Ap

rotor speed, N

friction factor

relative roughness e,/2c.

relative roughness e°/2c.

pre-swirl ratio

inlet loss, _i

exit pressure recovery, _,

13.13 mm

76.20 man

nominal values are given in Chapter VI

for measured values see Lindsey (1993)

water at 54.5°C

985.25 kg/m s

0.5268 x 10 -s Pa-s

1.38 Mpa, 2.41 Mpa, 3.45 Mpa

10200 rpm, 17400 rpm, 24600 rpm

Moody Model

0.001 (rotor)

0.001 (stator)

see table in Liadsey (1993)

0.1

1.0
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The following data is for Childs and Kim (1985) case.

Seal Data/or Childs g_ Kim (1985) Case

seal length, L

rotor radius, R

c_

c,

C,

fluid

density, p

viscosity

pressure drop, Ap

rotor speed, N

friction factor

roughness _, n_

roughness m., nj

pre_swir] ratio

inlet loss, _

exit pressure recovery, _e

16.66 mm (0.656 in)

48.39 mm (1.905 in)

0.224 mm (0.0088 in)

0.158 mm (0.0062 in)

0.191mm (0.00 5in)

liquid oxygen

1121.26 kg/m s (70.0 lbm/ft s)

1.292×10 -4 Pa-s (2.70x10 -e lb-s/ft _)

32.26 MPa (4700 psi)

23700 rpm

ttirs Model

-0.0980, 0.01091 (rotor)

-0.0433, 0.03120 (stator)

0.3

0.1

1.0
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The following data is for Shatter and Nelson (1990) case.

Seal Data .(or Shar'_r _ Nelson (1990) Case

seal length, L

rotor radius, R

c_

ce

Co

fluid

density, P

viscosity/_

pressure drop, Ap

rotor speed, N

_'iction factor

roughness m., n_

roughness m., n.

pre-swir] ratio

inlet loss, _

exit pressure recovery, _.

22.20 mm (0.874 in)

42.50 mm (1.673 in)

0.381 man (0.015 in)

0.127 mm (0.005 in)

o.127 (0.005in)

liquid oxygen

1124 kg/m s (70.0 lbm/ft s)

1.34x10 -4 Pa-s (2.70×10 -e lb-s/ft 2)

44.82 MPa (6500 psi)

30000 rpm

tiirs Modal

-0.2500, 0.0790 (rotor)

-0.1360, 0.0697 (stator)

0.8

0.25

1.0
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The following data is for Scharrer and Nunez (1989) case.

Seal Data for Shatter fd Ntmez (1989) Case

seal length, L

rotor radius, R

nominal c_

nominal c,

C.

fluid

density, p

viscosity p

pressure drop, Ap

rotor speed, N

friction factor

relative roughness rr_, n,

relative roughness ms, n.

pre-swirl ratio

inlet loss, _

exit pressure recovery, _,,

45.70 mm (1.8 in)

45.50 mm (1.79 in)

0.107 mm (0.0042 in)

0.089 mm (0.0035 in)

0.089m= (0.0035in)

liquid oxygen

1124 kg/m 3 (70.0 lbm/ft s)

1.34x 10 -4 Pa-s (2.70x 10 -6 lb-s/ft _)

14.93 MPa (2165 psi)

37360 rpm

H.i.rs Mode]

-0.25, 0.079 (rotor)

-0.136,0.0697 (stator)

0.6

0.25

1.0
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The following data is for Jenssen (1970) case.

Seal Data .for Jenssen (1970) Case

seal length, L

rotor radius, R

c_

c,

C.

fluid

density, p

viscosity p

pressure drop, Ap

rotor speed, N

friction factor

relative roughness e_/2c.

relative roughness es/2c..

pre-swirl ratio

inlet loss, _

exit pressure recovery, _.

50.80 mm (2.0 in)

24.76 mm (0.975 in)

0.272 mm (0.0107 in)

0.272 mm (0.0107 in)

0.272 mm (0.0107 in)

water

1000 kg/m s (62.43 lbm/ft s)

1.30 x 10 -s Pa-s (2.72 x 10 -5 lb--s/ft 2)

0.344, 1.034, 1.724 MPa (50,150,250 psi)

3000, 5000, 7000 rpm

Moody Model

0.0 (rotor)

0.0000748 (stator)

0.3

0.4

1.0
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The followingdata isfor Falco et al.(1986) case.

Seal Data/or Falco et al. (1986) Case

seallength,L

rotor radius,R

c4

Ce

C.

fluid

density,p

viscosity

pressure drop, Ap

rotor speed, N

fi'iction factor

relative roughness e,/2c.

relative roushness eo/2C.

pre-swirlratio

inlet loss, _

exit pressure recovery, _,

40 (1.5 in)

80 mm (3.15in)

0.36 mm (0.0142 in)

0.36 mm (0.0142 in)

0.36 mm (0.0142 in)

water

1000 kg/m 3 (62.43 lbm/R s)

1.0xl0 -8 Pa-s (2.10x10 -s ll>-s/ft_)

1.0 MPa (145 psi)

4000 rpm

Moody Model

0.0044 (rotor)

0.0083 (stator)

0.3

0.3

1.0
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The following data is for Kanki and Kawakami (1984) case.

Seal Data/or Kanki g_ Kawakami (1984) Case

seal length, L

rotor radius, R

c_

ct

C.

fluid

density, p

viscosity p

pressure drop, Ap

rotor speed, N

f_iction factor

relative roughness e_/2c.

relative roughness e./2c.

pre-swirl ratio

inlet loss, _

exit pressure recovery, _.

200 mm (7.87 in)

100 mm (3.94 in)

0.50 mm (0.0197 in)

0.50_,_ (0.0197in)

0.50mm (0.0197in)

water

1000 ks/m s (62.43 Ibm/ft s)

1.OxlO -3 Pa-s (2.10xlO -5 lb-s/ft =)

0.98 MPa (142 psi)

2000 rpm

Moody Modal

0.0033 (rotor)

0.0033 (stator)

0.0

0.1

1.0
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The foUowing data is for Allaire et aL (1976) case.

Seal Da_a /or Allair_ et al. (I976) Case

seal length, L

rotor radius, R

c_

c,

Co

fluid

density, p

viscosity #

pressure drop, Ap

rotor speed, N

friction factor

relative roughness _/2c,

relative roughness eo/2C.

pre_swirl ratio

inlet loss, _i

exit pressure recovery, _e

4o.6 (1.6oin)

39.9 mm (1.57 in)

0.14 mm (0.0055 in)

0.14 mm (0.0055 in)

0.14 mm (0.0055 in)

liquid hydrogen

57.657 kg/m 3 (3.6 lbm/ft s)

7.4396 x 10 -6 Pa-s (1.5538 x 10 -7 lb-s/ft =)

7.26 MPa (1050 psi)

23700 rpm

Moody Model

0.00 (rotor)

0.000001 (stator)

0.5

0.1

1.0
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The followingdata isfor San Andres et a/.(1992)

Seal Pa_meter8 for San Ands8 d al. (I99_)

seal length, L

rotor radius, R

c_

c.

C.

fluid

density, p

viscosity/_

inletpressure,_r

exit pressure, p.

rotor speed, N

friction factor

relative roughness, e./2c.

relative roughness, eo/2C.

pre-swirl ratio

inlet loss, _i

exit pressure recovery, _,

45.70 mm (0.656 in)

45.50 mm (1.905 in)

0.127 mm (0.00587 in)

0,127 mm (0.00581 in)

0.127 mm (0.00587 in)

liquid oxygen

variable prop. from NIST12 (MIPROPS)

variable prop. from NISTI2 (MIPROPS)

18.31 MPa (2621 psi)

3.378 Mpa (483 psi)

37360 rpm

Moody Model

0.0 (rotor)

0.044 (stator)

0.6

0.25

1.0
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The following data is for elliptical seal case.

Seal Parameters/or ElZiptical Seal

seal length, L

rotor radius, R

c_

Ce

¢.

fluid

density, p

viscosity #

pressure drop, Ap

rotor speed, N

friction factor

relative roughness, e./2c.

relative roughness, eo/2c.

pre-swirl ratio

inlet loss, _i

exit pressure recovery, _,

16.66 mm (0.656 in)

48.39 mm (1.905 in)

0.069 mm (0.00273 in)

0.099 mm (0.00390 in)

0.069 mm (0.00273 in)

liquid oxygen

1041.7 kg/m s (65.03lbm/i_s)

1.296xi0 -4 Pa-s (0.188xi0 -e Ib-s/ft=)

25.39 MPa (3681 psi)

22700 rpm

Moody Model

0.0 (rotor)

0.03 (stator)

0.2

0.33

1.0
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The following data is for the distorted seal case.

Seal Parameters for Distorted Seal Unit 8-01

seal length, L

rotor radius, R

average ci

average c,

nominal clearance c.

fluid

density, p

viscosity p

pressure drop Ap

rotor speed, N

friction factor

relative roughness, e.,/2c.

relative roughness, e,/2c.

pre-swir] ratio

inlet loss, _i

exit pressure recovery, _e

16.66== (o.656= )

48.39 m.m (1.905 in)

0.149 m= (0.00587 tu)

0.148 mm (0.00581 in)

0.149 mm (0.00587 in)

liquid oxygen

1041.7 kg/m s (65.03lbm/fts)

1.296x10 -4 Pa-s (0.188×I0 -s ll>.s/ft_)

35.25 MPa (5112 psi)

25000 rpm

Moody Model

0.0 (rotor)

0.8518 (stator)

0.2

0.3

1.0
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The following data is for seal unit 3-02 used in transient simulations.

Seal Parameters for Seal Unit 8-0_

seal length, L

rotor radius, R

c_

%

nominal clearance c,

fluid

density, p

viscosity p

pressure drop Ap

rotor speed, N

friction factor

relative roughness, e,/2c.

relative roughness, eo/2C.

pre-swirl ratio

inlet loss, _i

exit pressure recovery, _e

16.6 mm (0.656 in)

45.7 mm (1.80 in)

0.174 mm (0.00687 in)

0.148 mm (0.00581 in)

0.149 mm (0.00581 in)

liquid oxygen

1041.7 kg/m 3 (65.03 lbm/ft 3)

1.296x10 -4 Pa-s (0.188x10 -s Ib.-s/ft 2)

35.25 MPa (5112 psi)

25000 rpm

Moody Model

0.0 (rotor)

0.8518 (stator)

0.2

0.3

1.0


